| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import fluid
- def _split_ioup(output, an_num, num_classes):
- """
- Split new output feature map to output, predicted iou
- along channel dimension
- """
- ioup = fluid.layers.slice(output, axes=[1], starts=[0], ends=[an_num])
- ioup = fluid.layers.sigmoid(ioup)
- oriout = fluid.layers.slice(
- output, axes=[1], starts=[an_num], ends=[an_num * (num_classes + 6)])
- return (ioup, oriout)
- def _de_sigmoid(x, eps=1e-7):
- x = fluid.layers.clip(x, eps, 1 / eps)
- one = fluid.layers.fill_constant(
- shape=[1, 1, 1, 1], dtype=x.dtype, value=1.)
- x = fluid.layers.clip((one / x - 1.0), eps, 1 / eps)
- x = -fluid.layers.log(x)
- return x
- def _postprocess_output(ioup, output, an_num, num_classes, iou_aware_factor):
- """
- post process output objectness score
- """
- tensors = []
- stride = output.shape[1] // an_num
- for m in range(an_num):
- tensors.append(
- fluid.layers.slice(
- output,
- axes=[1],
- starts=[stride * m + 0],
- ends=[stride * m + 4]))
- obj = fluid.layers.slice(
- output, axes=[1], starts=[stride * m + 4], ends=[stride * m + 5])
- obj = fluid.layers.sigmoid(obj)
- ip = fluid.layers.slice(ioup, axes=[1], starts=[m], ends=[m + 1])
- new_obj = fluid.layers.pow(obj, (
- 1 - iou_aware_factor)) * fluid.layers.pow(ip, iou_aware_factor)
- new_obj = _de_sigmoid(new_obj)
- tensors.append(new_obj)
- tensors.append(
- fluid.layers.slice(
- output,
- axes=[1],
- starts=[stride * m + 5],
- ends=[stride * m + 5 + num_classes]))
- output = fluid.layers.concat(tensors, axis=1)
- return output
- def get_iou_aware_score(output, an_num, num_classes, iou_aware_factor):
- ioup, output = _split_ioup(output, an_num, num_classes)
- output = _postprocess_output(ioup, output, an_num, num_classes,
- iou_aware_factor)
- return output
|