| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- from paddle.fluid.param_attr import ParamAttr
- from paddle.fluid.initializer import NumpyArrayInitializer
- from paddle import fluid
- from .iou_loss import IouLoss
- class IouAwareLoss(IouLoss):
- """
- iou aware loss, see https://arxiv.org/abs/1912.05992
- Args:
- loss_weight (float): iou aware loss weight, default is 1.0
- max_height (int): max height of input to support random shape input
- max_width (int): max width of input to support random shape input
- """
- def __init__(self, loss_weight=1.0, max_height=608, max_width=608):
- super(IouAwareLoss, self).__init__(
- loss_weight=loss_weight,
- max_height=max_height,
- max_width=max_width)
- def __call__(self,
- ioup,
- x,
- y,
- w,
- h,
- tx,
- ty,
- tw,
- th,
- anchors,
- downsample_ratio,
- batch_size,
- scale_x_y,
- eps=1.e-10):
- '''
- Args:
- ioup ([Variables]): the predicted iou
- x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h
- tx |ty |tw |th ([Variables]): the target of yolov3 for encoded x|y|w|h
- anchors ([float]): list of anchors for current output layer
- downsample_ratio (float): the downsample ratio for current output layer
- batch_size (int): training batch size
- eps (float): the decimal to prevent the denominator eqaul zero
- '''
- pred = self._bbox_transform(x, y, w, h, anchors, downsample_ratio,
- batch_size, False, scale_x_y, eps)
- gt = self._bbox_transform(tx, ty, tw, th, anchors, downsample_ratio,
- batch_size, True, scale_x_y, eps)
- iouk = self._iou(pred, gt, ioup, eps)
- iouk.stop_gradient = True
- loss_iou_aware = fluid.layers.cross_entropy(
- ioup, iouk, soft_label=True)
- loss_iou_aware = loss_iou_aware * self._loss_weight
- return loss_iou_aware
|