det_transforms.py 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. try:
  15. from collections.abc import Sequence
  16. except Exception:
  17. from collections import Sequence
  18. import random
  19. import os.path as osp
  20. import numpy as np
  21. import cv2
  22. from PIL import Image, ImageEnhance
  23. from .imgaug_support import execute_imgaug
  24. from .ops import *
  25. from .box_utils import *
  26. class DetTransform:
  27. """检测数据处理基类
  28. """
  29. def __init__(self):
  30. pass
  31. class Compose(DetTransform):
  32. """根据数据预处理/增强列表对输入数据进行操作。
  33. 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
  34. Args:
  35. transforms (list): 数据预处理/增强列表。
  36. Raises:
  37. TypeError: 形参数据类型不满足需求。
  38. ValueError: 数据长度不匹配。
  39. """
  40. def __init__(self, transforms):
  41. if not isinstance(transforms, list):
  42. raise TypeError('The transforms must be a list!')
  43. if len(transforms) < 1:
  44. raise ValueError('The length of transforms ' + \
  45. 'must be equal or larger than 1!')
  46. self.transforms = transforms
  47. self.use_mixup = False
  48. for t in self.transforms:
  49. if type(t).__name__ == 'MixupImage':
  50. self.use_mixup = True
  51. # 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
  52. for op in self.transforms:
  53. if not isinstance(op, DetTransform):
  54. import imgaug.augmenters as iaa
  55. if not isinstance(op, iaa.Augmenter):
  56. raise Exception(
  57. "Elements in transforms should be defined in 'paddlex.det.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
  58. )
  59. def __call__(self, im, im_info=None, label_info=None):
  60. """
  61. Args:
  62. im (str/np.ndarray): 图像路径/图像np.ndarray数据。
  63. im_info (dict): 存储与图像相关的信息,dict中的字段如下:
  64. - im_id (np.ndarray): 图像序列号,形状为(1,)。
  65. - image_shape (np.ndarray): 图像原始大小,形状为(2,),
  66. image_shape[0]为高,image_shape[1]为宽。
  67. - mixup (list): list为[im, im_info, label_info],分别对应
  68. 与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
  69. 注意,当前epoch若无需进行mixup,则无该字段。
  70. label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
  71. - gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
  72. 其中n代表真实标注框的个数。
  73. - gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
  74. 其中n代表真实标注框的个数。
  75. - gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
  76. 其中n代表真实标注框的个数。
  77. - gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
  78. 长度为n,其中n代表真实标注框的个数。
  79. - is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
  80. 其中n代表真实标注框的个数。
  81. - difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
  82. 其中n代表真实标注框的个数。
  83. Returns:
  84. tuple: 根据网络所需字段所组成的tuple;
  85. 字段由transforms中的最后一个数据预处理操作决定。
  86. """
  87. def decode_image(im_file, im_info, label_info):
  88. if im_info is None:
  89. im_info = dict()
  90. if isinstance(im_file, np.ndarray):
  91. if len(im_file.shape) != 3:
  92. raise Exception(
  93. "im should be 3-dimensions, but now is {}-dimensions".
  94. format(len(im_file.shape)))
  95. im = im_file
  96. else:
  97. try:
  98. im = cv2.imread(im_file).astype('float32')
  99. except:
  100. raise TypeError('Can\'t read The image file {}!'.format(
  101. im_file))
  102. im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
  103. # make default im_info with [h, w, 1]
  104. im_info['im_resize_info'] = np.array(
  105. [im.shape[0], im.shape[1], 1.], dtype=np.float32)
  106. im_info['image_shape'] = np.array([im.shape[0],
  107. im.shape[1]]).astype('int32')
  108. if not self.use_mixup:
  109. if 'mixup' in im_info:
  110. del im_info['mixup']
  111. # decode mixup image
  112. if 'mixup' in im_info:
  113. im_info['mixup'] = \
  114. decode_image(im_info['mixup'][0],
  115. im_info['mixup'][1],
  116. im_info['mixup'][2])
  117. if label_info is None:
  118. return (im, im_info)
  119. else:
  120. return (im, im_info, label_info)
  121. outputs = decode_image(im, im_info, label_info)
  122. im = outputs[0]
  123. im_info = outputs[1]
  124. if len(outputs) == 3:
  125. label_info = outputs[2]
  126. for op in self.transforms:
  127. if im is None:
  128. return None
  129. if isinstance(op, DetTransform):
  130. outputs = op(im, im_info, label_info)
  131. im = outputs[0]
  132. else:
  133. im = execute_imgaug(op, im)
  134. if label_info is not None:
  135. outputs = (im, im_info, label_info)
  136. else:
  137. outputs = (im, im_info)
  138. return outputs
  139. def add_augmenters(self, augmenters):
  140. if not isinstance(augmenters, list):
  141. raise Exception(
  142. "augmenters should be list type in func add_augmenters()")
  143. self.transforms = augmenters + self.transforms.transforms
  144. class ResizeByShort(DetTransform):
  145. """根据图像的短边调整图像大小(resize)。
  146. 1. 获取图像的长边和短边长度。
  147. 2. 根据短边与short_size的比例,计算长边的目标长度,
  148. 此时高、宽的resize比例为short_size/原图短边长度。
  149. 3. 如果max_size>0,调整resize比例:
  150. 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
  151. 4. 根据调整大小的比例对图像进行resize。
  152. Args:
  153. target_size (int): 短边目标长度。默认为800。
  154. max_size (int): 长边目标长度的最大限制。默认为1333。
  155. Raises:
  156. TypeError: 形参数据类型不满足需求。
  157. """
  158. def __init__(self, short_size=800, max_size=1333):
  159. self.max_size = int(max_size)
  160. if not isinstance(short_size, int):
  161. raise TypeError(
  162. "Type of short_size is invalid. Must be Integer, now is {}".
  163. format(type(short_size)))
  164. self.short_size = short_size
  165. if not (isinstance(self.max_size, int)):
  166. raise TypeError("max_size: input type is invalid.")
  167. def __call__(self, im, im_info=None, label_info=None):
  168. """
  169. Args:
  170. im (numnp.ndarraypy): 图像np.ndarray数据。
  171. im_info (dict, 可选): 存储与图像相关的信息。
  172. label_info (dict, 可选): 存储与标注框相关的信息。
  173. Returns:
  174. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  175. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  176. 存储与标注框相关信息的字典。
  177. 其中,im_info更新字段为:
  178. - im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
  179. 三者组成的np.ndarray,形状为(3,)。
  180. Raises:
  181. TypeError: 形参数据类型不满足需求。
  182. ValueError: 数据长度不匹配。
  183. """
  184. if im_info is None:
  185. im_info = dict()
  186. if not isinstance(im, np.ndarray):
  187. raise TypeError("ResizeByShort: image type is not numpy.")
  188. if len(im.shape) != 3:
  189. raise ValueError('ResizeByShort: image is not 3-dimensional.')
  190. im_short_size = min(im.shape[0], im.shape[1])
  191. im_long_size = max(im.shape[0], im.shape[1])
  192. scale = float(self.short_size) / im_short_size
  193. if self.max_size > 0 and np.round(scale *
  194. im_long_size) > self.max_size:
  195. scale = float(self.max_size) / float(im_long_size)
  196. resized_width = int(round(im.shape[1] * scale))
  197. resized_height = int(round(im.shape[0] * scale))
  198. im_resize_info = [resized_height, resized_width, scale]
  199. im = cv2.resize(
  200. im, (resized_width, resized_height),
  201. interpolation=cv2.INTER_LINEAR)
  202. im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
  203. if label_info is None:
  204. return (im, im_info)
  205. else:
  206. return (im, im_info, label_info)
  207. class Padding(DetTransform):
  208. """1.将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
  209. `coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
  210. 进行padding,最终输出图像为[320, 640]。
  211. 2.或者,将图像的长和宽padding到target_size指定的shape,如输入的图像为[300,640],
  212. a. `target_size` = 960,在图像最右和最下使用0值进行padding,最终输出
  213. 图像为[960, 960]。
  214. b. `target_size` = [640, 960],在图像最右和最下使用0值进行padding,最终
  215. 输出图像为[640, 960]。
  216. 1. 如果coarsest_stride为1,target_size为None则直接返回。
  217. 2. 获取图像的高H、宽W。
  218. 3. 计算填充后图像的高H_new、宽W_new。
  219. 4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
  220. 并将原图的np.ndarray粘贴于左上角。
  221. Args:
  222. coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
  223. target_size (int|list|tuple): 填充后的图像长、宽,默认为None,coarset_stride优先级更高。
  224. Raises:
  225. TypeError: 形参`target_size`数据类型不满足需求。
  226. ValueError: 形参`target_size`为(list|tuple)时,长度不满足需求。
  227. """
  228. def __init__(self, coarsest_stride=1, target_size=None):
  229. self.coarsest_stride = coarsest_stride
  230. if target_size is not None:
  231. if not isinstance(target_size, int):
  232. if not isinstance(target_size, tuple) and not isinstance(
  233. target_size, list):
  234. raise TypeError(
  235. "Padding: Type of target_size must in (int|list|tuple)."
  236. )
  237. elif len(target_size) != 2:
  238. raise ValueError(
  239. "Padding: Length of target_size must equal 2.")
  240. self.target_size = target_size
  241. def __call__(self, im, im_info=None, label_info=None):
  242. """
  243. Args:
  244. im (numnp.ndarraypy): 图像np.ndarray数据。
  245. im_info (dict, 可选): 存储与图像相关的信息。
  246. label_info (dict, 可选): 存储与标注框相关的信息。
  247. Returns:
  248. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  249. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  250. 存储与标注框相关信息的字典。
  251. Raises:
  252. TypeError: 形参数据类型不满足需求。
  253. ValueError: 数据长度不匹配。
  254. ValueError: coarsest_stride,target_size需有且只有一个被指定。
  255. ValueError: target_size小于原图的大小。
  256. """
  257. if im_info is None:
  258. im_info = dict()
  259. if not isinstance(im, np.ndarray):
  260. raise TypeError("Padding: image type is not numpy.")
  261. if len(im.shape) != 3:
  262. raise ValueError('Padding: image is not 3-dimensional.')
  263. im_h, im_w, im_c = im.shape[:]
  264. if isinstance(self.target_size, int):
  265. padding_im_h = self.target_size
  266. padding_im_w = self.target_size
  267. elif isinstance(self.target_size, list) or isinstance(self.target_size,
  268. tuple):
  269. padding_im_w = self.target_size[0]
  270. padding_im_h = self.target_size[1]
  271. elif self.coarsest_stride > 0:
  272. padding_im_h = int(
  273. np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
  274. padding_im_w = int(
  275. np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
  276. else:
  277. raise ValueError(
  278. "coarsest_stridei(>1) or target_size(list|int) need setting in Padding transform"
  279. )
  280. pad_height = padding_im_h - im_h
  281. pad_width = padding_im_w - im_w
  282. if pad_height < 0 or pad_width < 0:
  283. raise ValueError(
  284. 'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
  285. .format(im_w, im_h, padding_im_w, padding_im_h))
  286. padding_im = np.zeros(
  287. (padding_im_h, padding_im_w, im_c), dtype=np.float32)
  288. padding_im[:im_h, :im_w, :] = im
  289. if label_info is None:
  290. return (padding_im, im_info)
  291. else:
  292. return (padding_im, im_info, label_info)
  293. class Resize(DetTransform):
  294. """调整图像大小(resize)。
  295. - 当目标大小(target_size)类型为int时,根据插值方式,
  296. 将图像resize为[target_size, target_size]。
  297. - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
  298. 将图像resize为target_size。
  299. 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
  300. Args:
  301. target_size (int/list/tuple): 短边目标长度。默认为608。
  302. interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
  303. ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
  304. Raises:
  305. TypeError: 形参数据类型不满足需求。
  306. ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
  307. 'AREA', 'LANCZOS4', 'RANDOM']中。
  308. """
  309. # The interpolation mode
  310. interp_dict = {
  311. 'NEAREST': cv2.INTER_NEAREST,
  312. 'LINEAR': cv2.INTER_LINEAR,
  313. 'CUBIC': cv2.INTER_CUBIC,
  314. 'AREA': cv2.INTER_AREA,
  315. 'LANCZOS4': cv2.INTER_LANCZOS4
  316. }
  317. def __init__(self, target_size=608, interp='LINEAR'):
  318. self.interp = interp
  319. if not (interp == "RANDOM" or interp in self.interp_dict):
  320. raise ValueError("interp should be one of {}".format(
  321. self.interp_dict.keys()))
  322. if isinstance(target_size, list) or isinstance(target_size, tuple):
  323. if len(target_size) != 2:
  324. raise TypeError(
  325. 'when target is list or tuple, it should include 2 elements, but it is {}'
  326. .format(target_size))
  327. elif not isinstance(target_size, int):
  328. raise TypeError(
  329. "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
  330. .format(type(target_size)))
  331. self.target_size = target_size
  332. def __call__(self, im, im_info=None, label_info=None):
  333. """
  334. Args:
  335. im (np.ndarray): 图像np.ndarray数据。
  336. im_info (dict, 可选): 存储与图像相关的信息。
  337. label_info (dict, 可选): 存储与标注框相关的信息。
  338. Returns:
  339. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  340. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  341. 存储与标注框相关信息的字典。
  342. Raises:
  343. TypeError: 形参数据类型不满足需求。
  344. ValueError: 数据长度不匹配。
  345. """
  346. if im_info is None:
  347. im_info = dict()
  348. if not isinstance(im, np.ndarray):
  349. raise TypeError("Resize: image type is not numpy.")
  350. if len(im.shape) != 3:
  351. raise ValueError('Resize: image is not 3-dimensional.')
  352. if self.interp == "RANDOM":
  353. interp = random.choice(list(self.interp_dict.keys()))
  354. else:
  355. interp = self.interp
  356. im = resize(im, self.target_size, self.interp_dict[interp])
  357. if label_info is None:
  358. return (im, im_info)
  359. else:
  360. return (im, im_info, label_info)
  361. class RandomHorizontalFlip(DetTransform):
  362. """随机翻转图像、标注框、分割信息,模型训练时的数据增强操作。
  363. 1. 随机采样一个0-1之间的小数,当小数小于水平翻转概率时,
  364. 执行2-4步操作,否则直接返回。
  365. 2. 水平翻转图像。
  366. 3. 计算翻转后的真实标注框的坐标,更新label_info中的gt_bbox信息。
  367. 4. 计算翻转后的真实分割区域的坐标,更新label_info中的gt_poly信息。
  368. Args:
  369. prob (float): 随机水平翻转的概率。默认为0.5。
  370. Raises:
  371. TypeError: 形参数据类型不满足需求。
  372. """
  373. def __init__(self, prob=0.5):
  374. self.prob = prob
  375. if not isinstance(self.prob, float):
  376. raise TypeError("RandomHorizontalFlip: input type is invalid.")
  377. def __call__(self, im, im_info=None, label_info=None):
  378. """
  379. Args:
  380. im (np.ndarray): 图像np.ndarray数据。
  381. im_info (dict, 可选): 存储与图像相关的信息。
  382. label_info (dict, 可选): 存储与标注框相关的信息。
  383. Returns:
  384. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  385. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  386. 存储与标注框相关信息的字典。
  387. 其中,im_info更新字段为:
  388. - gt_bbox (np.ndarray): 水平翻转后的标注框坐标[x1, y1, x2, y2],形状为(n, 4),
  389. 其中n代表真实标注框的个数。
  390. - gt_poly (list): 水平翻转后的多边形分割区域的x、y坐标,长度为n,
  391. 其中n代表真实标注框的个数。
  392. Raises:
  393. TypeError: 形参数据类型不满足需求。
  394. ValueError: 数据长度不匹配。
  395. """
  396. if not isinstance(im, np.ndarray):
  397. raise TypeError(
  398. "RandomHorizontalFlip: image is not a numpy array.")
  399. if len(im.shape) != 3:
  400. raise ValueError(
  401. "RandomHorizontalFlip: image is not 3-dimensional.")
  402. if im_info is None or label_info is None:
  403. raise TypeError(
  404. 'Cannot do RandomHorizontalFlip! ' +
  405. 'Becasuse the im_info and label_info can not be None!')
  406. if 'gt_bbox' not in label_info:
  407. raise TypeError('Cannot do RandomHorizontalFlip! ' + \
  408. 'Becasuse gt_bbox is not in label_info!')
  409. image_shape = im_info['image_shape']
  410. gt_bbox = label_info['gt_bbox']
  411. height = image_shape[0]
  412. width = image_shape[1]
  413. if np.random.uniform(0, 1) < self.prob:
  414. im = horizontal_flip(im)
  415. if gt_bbox.shape[0] == 0:
  416. if label_info is None:
  417. return (im, im_info)
  418. else:
  419. return (im, im_info, label_info)
  420. label_info['gt_bbox'] = box_horizontal_flip(gt_bbox, width)
  421. if 'gt_poly' in label_info and \
  422. len(label_info['gt_poly']) != 0:
  423. label_info['gt_poly'] = segms_horizontal_flip(
  424. label_info['gt_poly'], height, width)
  425. if label_info is None:
  426. return (im, im_info)
  427. else:
  428. return (im, im_info, label_info)
  429. class Normalize(DetTransform):
  430. """对图像进行标准化。
  431. 1. 归一化图像到到区间[0.0, 1.0]。
  432. 2. 对图像进行减均值除以标准差操作。
  433. Args:
  434. mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
  435. std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
  436. Raises:
  437. TypeError: 形参数据类型不满足需求。
  438. """
  439. def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
  440. self.mean = mean
  441. self.std = std
  442. if not (isinstance(self.mean, list) and isinstance(self.std, list)):
  443. raise TypeError("NormalizeImage: input type is invalid.")
  444. from functools import reduce
  445. if reduce(lambda x, y: x * y, self.std) == 0:
  446. raise TypeError('NormalizeImage: std is invalid!')
  447. def __call__(self, im, im_info=None, label_info=None):
  448. """
  449. Args:
  450. im (numnp.ndarraypy): 图像np.ndarray数据。
  451. im_info (dict, 可选): 存储与图像相关的信息。
  452. label_info (dict, 可选): 存储与标注框相关的信息。
  453. Returns:
  454. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  455. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  456. 存储与标注框相关信息的字典。
  457. """
  458. mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
  459. std = np.array(self.std)[np.newaxis, np.newaxis, :]
  460. im = normalize(im, mean, std)
  461. if label_info is None:
  462. return (im, im_info)
  463. else:
  464. return (im, im_info, label_info)
  465. class RandomDistort(DetTransform):
  466. """以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作
  467. 1. 对变换的操作顺序进行随机化操作。
  468. 2. 按照1中的顺序以一定的概率在范围[-range, range]对图像进行随机像素内容变换。
  469. Args:
  470. brightness_range (float): 明亮度因子的范围。默认为0.5。
  471. brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
  472. contrast_range (float): 对比度因子的范围。默认为0.5。
  473. contrast_prob (float): 随机调整对比度的概率。默认为0.5。
  474. saturation_range (float): 饱和度因子的范围。默认为0.5。
  475. saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
  476. hue_range (int): 色调因子的范围。默认为18。
  477. hue_prob (float): 随机调整色调的概率。默认为0.5。
  478. """
  479. def __init__(self,
  480. brightness_range=0.5,
  481. brightness_prob=0.5,
  482. contrast_range=0.5,
  483. contrast_prob=0.5,
  484. saturation_range=0.5,
  485. saturation_prob=0.5,
  486. hue_range=18,
  487. hue_prob=0.5):
  488. self.brightness_range = brightness_range
  489. self.brightness_prob = brightness_prob
  490. self.contrast_range = contrast_range
  491. self.contrast_prob = contrast_prob
  492. self.saturation_range = saturation_range
  493. self.saturation_prob = saturation_prob
  494. self.hue_range = hue_range
  495. self.hue_prob = hue_prob
  496. def __call__(self, im, im_info=None, label_info=None):
  497. """
  498. Args:
  499. im (np.ndarray): 图像np.ndarray数据。
  500. im_info (dict, 可选): 存储与图像相关的信息。
  501. label_info (dict, 可选): 存储与标注框相关的信息。
  502. Returns:
  503. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  504. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  505. 存储与标注框相关信息的字典。
  506. """
  507. brightness_lower = 1 - self.brightness_range
  508. brightness_upper = 1 + self.brightness_range
  509. contrast_lower = 1 - self.contrast_range
  510. contrast_upper = 1 + self.contrast_range
  511. saturation_lower = 1 - self.saturation_range
  512. saturation_upper = 1 + self.saturation_range
  513. hue_lower = -self.hue_range
  514. hue_upper = self.hue_range
  515. ops = [brightness, contrast, saturation, hue]
  516. random.shuffle(ops)
  517. params_dict = {
  518. 'brightness': {
  519. 'brightness_lower': brightness_lower,
  520. 'brightness_upper': brightness_upper
  521. },
  522. 'contrast': {
  523. 'contrast_lower': contrast_lower,
  524. 'contrast_upper': contrast_upper
  525. },
  526. 'saturation': {
  527. 'saturation_lower': saturation_lower,
  528. 'saturation_upper': saturation_upper
  529. },
  530. 'hue': {
  531. 'hue_lower': hue_lower,
  532. 'hue_upper': hue_upper
  533. }
  534. }
  535. prob_dict = {
  536. 'brightness': self.brightness_prob,
  537. 'contrast': self.contrast_prob,
  538. 'saturation': self.saturation_prob,
  539. 'hue': self.hue_prob
  540. }
  541. for id in range(4):
  542. params = params_dict[ops[id].__name__]
  543. prob = prob_dict[ops[id].__name__]
  544. params['im'] = im
  545. if np.random.uniform(0, 1) < prob:
  546. im = ops[id](**params)
  547. if label_info is None:
  548. return (im, im_info)
  549. else:
  550. return (im, im_info, label_info)
  551. class MixupImage(DetTransform):
  552. """对图像进行mixup操作,模型训练时的数据增强操作,目前仅YOLOv3模型支持该transform。
  553. 当label_info中不存在mixup字段时,直接返回,否则进行下述操作:
  554. 1. 从随机beta分布中抽取出随机因子factor。
  555. 2.
  556. - 当factor>=1.0时,去除label_info中的mixup字段,直接返回。
  557. - 当factor<=0.0时,直接返回label_info中的mixup字段,并在label_info中去除该字段。
  558. - 其余情况,执行下述操作:
  559. (1)原图像乘以factor,mixup图像乘以(1-factor),叠加2个结果。
  560. (2)拼接原图像标注框和mixup图像标注框。
  561. (3)拼接原图像标注框类别和mixup图像标注框类别。
  562. (4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
  563. 3. 更新im_info中的image_shape信息。
  564. Args:
  565. alpha (float): 随机beta分布的下限。默认为1.5。
  566. beta (float): 随机beta分布的上限。默认为1.5。
  567. mixup_epoch (int): 在前mixup_epoch轮使用mixup增强操作;当该参数为-1时,该策略不会生效。
  568. 默认为-1。
  569. Raises:
  570. ValueError: 数据长度不匹配。
  571. """
  572. def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
  573. self.alpha = alpha
  574. self.beta = beta
  575. if self.alpha <= 0.0:
  576. raise ValueError("alpha shold be positive in MixupImage")
  577. if self.beta <= 0.0:
  578. raise ValueError("beta shold be positive in MixupImage")
  579. self.mixup_epoch = mixup_epoch
  580. def _mixup_img(self, img1, img2, factor):
  581. h = max(img1.shape[0], img2.shape[0])
  582. w = max(img1.shape[1], img2.shape[1])
  583. img = np.zeros((h, w, img1.shape[2]), 'float32')
  584. img[:img1.shape[0], :img1.shape[1], :] = \
  585. img1.astype('float32') * factor
  586. img[:img2.shape[0], :img2.shape[1], :] += \
  587. img2.astype('float32') * (1.0 - factor)
  588. return img.astype('float32')
  589. def __call__(self, im, im_info=None, label_info=None):
  590. """
  591. Args:
  592. im (np.ndarray): 图像np.ndarray数据。
  593. im_info (dict, 可选): 存储与图像相关的信息。
  594. label_info (dict, 可选): 存储与标注框相关的信息。
  595. Returns:
  596. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  597. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  598. 存储与标注框相关信息的字典。
  599. 其中,im_info更新字段为:
  600. - image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
  601. im_info删除的字段:
  602. - mixup (list): 与当前字段进行mixup的图像相关信息。
  603. label_info更新字段为:
  604. - gt_bbox (np.ndarray): mixup后真实标注框坐标,形状为(n, 4),
  605. 其中n代表真实标注框的个数。
  606. - gt_class (np.ndarray): mixup后每个真实标注框对应的类别序号,形状为(n, 1),
  607. 其中n代表真实标注框的个数。
  608. - gt_score (np.ndarray): mixup后每个真实标注框对应的混合得分,形状为(n, 1),
  609. 其中n代表真实标注框的个数。
  610. Raises:
  611. TypeError: 形参数据类型不满足需求。
  612. """
  613. if im_info is None:
  614. raise TypeError('Cannot do MixupImage! ' +
  615. 'Becasuse the im_info can not be None!')
  616. if 'mixup' not in im_info:
  617. if label_info is None:
  618. return (im, im_info)
  619. else:
  620. return (im, im_info, label_info)
  621. factor = np.random.beta(self.alpha, self.beta)
  622. factor = max(0.0, min(1.0, factor))
  623. if im_info['epoch'] > self.mixup_epoch \
  624. or factor >= 1.0:
  625. im_info.pop('mixup')
  626. if label_info is None:
  627. return (im, im_info)
  628. else:
  629. return (im, im_info, label_info)
  630. if factor <= 0.0:
  631. return im_info.pop('mixup')
  632. im = self._mixup_img(im, im_info['mixup'][0], factor)
  633. if label_info is None:
  634. raise TypeError('Cannot do MixupImage! ' +
  635. 'Becasuse the label_info can not be None!')
  636. if 'gt_bbox' not in label_info or \
  637. 'gt_class' not in label_info or \
  638. 'gt_score' not in label_info:
  639. raise TypeError('Cannot do MixupImage! ' + \
  640. 'Becasuse gt_bbox/gt_class/gt_score is not in label_info!')
  641. gt_bbox1 = label_info['gt_bbox']
  642. gt_bbox2 = im_info['mixup'][2]['gt_bbox']
  643. gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
  644. gt_class1 = label_info['gt_class']
  645. gt_class2 = im_info['mixup'][2]['gt_class']
  646. gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
  647. gt_score1 = label_info['gt_score']
  648. gt_score2 = im_info['mixup'][2]['gt_score']
  649. gt_score = np.concatenate(
  650. (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
  651. if 'gt_poly' in label_info:
  652. gt_poly1 = label_info['gt_poly']
  653. gt_poly2 = im_info['mixup'][2]['gt_poly']
  654. label_info['gt_poly'] = gt_poly1 + gt_poly2
  655. is_crowd1 = label_info['is_crowd']
  656. is_crowd2 = im_info['mixup'][2]['is_crowd']
  657. is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
  658. label_info['gt_bbox'] = gt_bbox
  659. label_info['gt_score'] = gt_score
  660. label_info['gt_class'] = gt_class
  661. label_info['is_crowd'] = is_crowd
  662. im_info['image_shape'] = np.array([im.shape[0],
  663. im.shape[1]]).astype('int32')
  664. im_info.pop('mixup')
  665. if label_info is None:
  666. return (im, im_info)
  667. else:
  668. return (im, im_info, label_info)
  669. class RandomExpand(DetTransform):
  670. """随机扩张图像,模型训练时的数据增强操作。
  671. 1. 随机选取扩张比例(扩张比例大于1时才进行扩张)。
  672. 2. 计算扩张后图像大小。
  673. 3. 初始化像素值为输入填充值的图像,并将原图像随机粘贴于该图像上。
  674. 4. 根据原图像粘贴位置换算出扩张后真实标注框的位置坐标。
  675. 5. 根据原图像粘贴位置换算出扩张后真实分割区域的位置坐标。
  676. Args:
  677. ratio (float): 图像扩张的最大比例。默认为4.0。
  678. prob (float): 随机扩张的概率。默认为0.5。
  679. fill_value (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
  680. """
  681. def __init__(self,
  682. ratio=4.,
  683. prob=0.5,
  684. fill_value=[123.675, 116.28, 103.53]):
  685. super(RandomExpand, self).__init__()
  686. assert ratio > 1.01, "expand ratio must be larger than 1.01"
  687. self.ratio = ratio
  688. self.prob = prob
  689. assert isinstance(fill_value, Sequence), \
  690. "fill value must be sequence"
  691. if not isinstance(fill_value, tuple):
  692. fill_value = tuple(fill_value)
  693. self.fill_value = fill_value
  694. def __call__(self, im, im_info=None, label_info=None):
  695. """
  696. Args:
  697. im (np.ndarray): 图像np.ndarray数据。
  698. im_info (dict, 可选): 存储与图像相关的信息。
  699. label_info (dict, 可选): 存储与标注框相关的信息。
  700. Returns:
  701. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  702. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  703. 存储与标注框相关信息的字典。
  704. 其中,im_info更新字段为:
  705. - image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
  706. label_info更新字段为:
  707. - gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
  708. 其中n代表真实标注框的个数。
  709. - gt_class (np.ndarray): 随机扩张后每个真实标注框对应的类别序号,形状为(n, 1),
  710. 其中n代表真实标注框的个数。
  711. Raises:
  712. TypeError: 形参数据类型不满足需求。
  713. """
  714. if im_info is None or label_info is None:
  715. raise TypeError(
  716. 'Cannot do RandomExpand! ' +
  717. 'Becasuse the im_info and label_info can not be None!')
  718. if 'gt_bbox' not in label_info or \
  719. 'gt_class' not in label_info:
  720. raise TypeError('Cannot do RandomExpand! ' + \
  721. 'Becasuse gt_bbox/gt_class is not in label_info!')
  722. if np.random.uniform(0., 1.) < self.prob:
  723. return (im, im_info, label_info)
  724. image_shape = im_info['image_shape']
  725. height = int(image_shape[0])
  726. width = int(image_shape[1])
  727. expand_ratio = np.random.uniform(1., self.ratio)
  728. h = int(height * expand_ratio)
  729. w = int(width * expand_ratio)
  730. if not h > height or not w > width:
  731. return (im, im_info, label_info)
  732. y = np.random.randint(0, h - height)
  733. x = np.random.randint(0, w - width)
  734. canvas = np.ones((h, w, 3), dtype=np.float32)
  735. canvas *= np.array(self.fill_value, dtype=np.float32)
  736. canvas[y:y + height, x:x + width, :] = im
  737. im_info['image_shape'] = np.array([h, w]).astype('int32')
  738. if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
  739. label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
  740. if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
  741. label_info['gt_poly'] = expand_segms(label_info['gt_poly'], x, y,
  742. height, width, expand_ratio)
  743. return (canvas, im_info, label_info)
  744. class RandomCrop(DetTransform):
  745. """随机裁剪图像。
  746. 1. 若allow_no_crop为True,则在thresholds加入’no_crop’。
  747. 2. 随机打乱thresholds。
  748. 3. 遍历thresholds中各元素:
  749. (1) 如果当前thresh为’no_crop’,则返回原始图像和标注信息。
  750. (2) 随机取出aspect_ratio和scaling中的值并由此计算出候选裁剪区域的高、宽、起始点。
  751. (3) 计算真实标注框与候选裁剪区域IoU,若全部真实标注框的IoU都小于thresh,则继续第3步。
  752. (4) 如果cover_all_box为True且存在真实标注框的IoU小于thresh,则继续第3步。
  753. (5) 筛选出位于候选裁剪区域内的真实标注框,若有效框的个数为0,则继续第3步,否则进行第4步。
  754. 4. 换算有效真值标注框相对候选裁剪区域的位置坐标。
  755. 5. 换算有效分割区域相对候选裁剪区域的位置坐标。
  756. Args:
  757. aspect_ratio (list): 裁剪后短边缩放比例的取值范围,以[min, max]形式表示。默认值为[.5, 2.]。
  758. thresholds (list): 判断裁剪候选区域是否有效所需的IoU阈值取值列表。默认值为[.0, .1, .3, .5, .7, .9]。
  759. scaling (list): 裁剪面积相对原面积的取值范围,以[min, max]形式表示。默认值为[.3, 1.]。
  760. num_attempts (int): 在放弃寻找有效裁剪区域前尝试的次数。默认值为50。
  761. allow_no_crop (bool): 是否允许未进行裁剪。默认值为True。
  762. cover_all_box (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
  763. """
  764. def __init__(self,
  765. aspect_ratio=[.5, 2.],
  766. thresholds=[.0, .1, .3, .5, .7, .9],
  767. scaling=[.3, 1.],
  768. num_attempts=50,
  769. allow_no_crop=True,
  770. cover_all_box=False):
  771. self.aspect_ratio = aspect_ratio
  772. self.thresholds = thresholds
  773. self.scaling = scaling
  774. self.num_attempts = num_attempts
  775. self.allow_no_crop = allow_no_crop
  776. self.cover_all_box = cover_all_box
  777. def __call__(self, im, im_info=None, label_info=None):
  778. """
  779. Args:
  780. im (np.ndarray): 图像np.ndarray数据。
  781. im_info (dict, 可选): 存储与图像相关的信息。
  782. label_info (dict, 可选): 存储与标注框相关的信息。
  783. Returns:
  784. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  785. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  786. 存储与标注框相关信息的字典。
  787. 其中,im_info更新字段为:
  788. - image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
  789. label_info更新字段为:
  790. - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
  791. 其中n代表真实标注框的个数。
  792. - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
  793. 其中n代表真实标注框的个数。
  794. - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
  795. 其中n代表真实标注框的个数。
  796. Raises:
  797. TypeError: 形参数据类型不满足需求。
  798. """
  799. if im_info is None or label_info is None:
  800. raise TypeError(
  801. 'Cannot do RandomCrop! ' +
  802. 'Becasuse the im_info and label_info can not be None!')
  803. if 'gt_bbox' not in label_info or \
  804. 'gt_class' not in label_info:
  805. raise TypeError('Cannot do RandomCrop! ' + \
  806. 'Becasuse gt_bbox/gt_class is not in label_info!')
  807. if len(label_info['gt_bbox']) == 0:
  808. return (im, im_info, label_info)
  809. image_shape = im_info['image_shape']
  810. w = image_shape[1]
  811. h = image_shape[0]
  812. gt_bbox = label_info['gt_bbox']
  813. thresholds = list(self.thresholds)
  814. if self.allow_no_crop:
  815. thresholds.append('no_crop')
  816. np.random.shuffle(thresholds)
  817. for thresh in thresholds:
  818. if thresh == 'no_crop':
  819. return (im, im_info, label_info)
  820. found = False
  821. for i in range(self.num_attempts):
  822. scale = np.random.uniform(*self.scaling)
  823. min_ar, max_ar = self.aspect_ratio
  824. aspect_ratio = np.random.uniform(
  825. max(min_ar, scale**2), min(max_ar, scale**-2))
  826. crop_h = int(h * scale / np.sqrt(aspect_ratio))
  827. crop_w = int(w * scale * np.sqrt(aspect_ratio))
  828. crop_y = np.random.randint(0, h - crop_h)
  829. crop_x = np.random.randint(0, w - crop_w)
  830. crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
  831. iou = iou_matrix(
  832. gt_bbox, np.array(
  833. [crop_box], dtype=np.float32))
  834. if iou.max() < thresh:
  835. continue
  836. if self.cover_all_box and iou.min() < thresh:
  837. continue
  838. cropped_box, valid_ids = crop_box_with_center_constraint(
  839. gt_bbox, np.array(
  840. crop_box, dtype=np.float32))
  841. if valid_ids.size > 0:
  842. found = True
  843. break
  844. if found:
  845. if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
  846. crop_polys = crop_segms(
  847. label_info['gt_poly'],
  848. valid_ids,
  849. np.array(
  850. crop_box, dtype=np.int64),
  851. h,
  852. w)
  853. if [] in crop_polys:
  854. delete_id = list()
  855. valid_polys = list()
  856. for id, crop_poly in enumerate(crop_polys):
  857. if crop_poly == []:
  858. delete_id.append(id)
  859. else:
  860. valid_polys.append(crop_poly)
  861. valid_ids = np.delete(valid_ids, delete_id)
  862. if len(valid_polys) == 0:
  863. return (im, im_info, label_info)
  864. label_info['gt_poly'] = valid_polys
  865. else:
  866. label_info['gt_poly'] = crop_polys
  867. im = crop_image(im, crop_box)
  868. label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
  869. label_info['gt_class'] = np.take(
  870. label_info['gt_class'], valid_ids, axis=0)
  871. im_info['image_shape'] = np.array(
  872. [crop_box[3] - crop_box[1],
  873. crop_box[2] - crop_box[0]]).astype('int32')
  874. if 'gt_score' in label_info:
  875. label_info['gt_score'] = np.take(
  876. label_info['gt_score'], valid_ids, axis=0)
  877. if 'is_crowd' in label_info:
  878. label_info['is_crowd'] = np.take(
  879. label_info['is_crowd'], valid_ids, axis=0)
  880. return (im, im_info, label_info)
  881. return (im, im_info, label_info)
  882. class ArrangeFasterRCNN(DetTransform):
  883. """获取FasterRCNN模型训练/验证/预测所需信息。
  884. Args:
  885. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  886. Raises:
  887. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  888. """
  889. def __init__(self, mode=None):
  890. if mode not in ['train', 'eval', 'test', 'quant']:
  891. raise ValueError(
  892. "mode must be in ['train', 'eval', 'test', 'quant']!")
  893. self.mode = mode
  894. def __call__(self, im, im_info=None, label_info=None):
  895. """
  896. Args:
  897. im (np.ndarray): 图像np.ndarray数据。
  898. im_info (dict, 可选): 存储与图像相关的信息。
  899. label_info (dict, 可选): 存储与标注框相关的信息。
  900. Returns:
  901. tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd),分别对应
  902. 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象;
  903. 当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape, gt_bbox, gt_class, is_difficult),
  904. 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像id、图像大小信息、真实标注框、真实标注框对应的类别、
  905. 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),分别对应图像np.ndarray数据、
  906. 图像相当对于原图的resize信息、图像大小信息。
  907. Raises:
  908. TypeError: 形参数据类型不满足需求。
  909. ValueError: 数据长度不匹配。
  910. """
  911. im = permute(im, False)
  912. if self.mode == 'train':
  913. if im_info is None or label_info is None:
  914. raise TypeError(
  915. 'Cannot do ArrangeFasterRCNN! ' +
  916. 'Becasuse the im_info and label_info can not be None!')
  917. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  918. raise ValueError("gt num mismatch: bbox and class.")
  919. im_resize_info = im_info['im_resize_info']
  920. gt_bbox = label_info['gt_bbox']
  921. gt_class = label_info['gt_class']
  922. is_crowd = label_info['is_crowd']
  923. outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd)
  924. elif self.mode == 'eval':
  925. if im_info is None or label_info is None:
  926. raise TypeError(
  927. 'Cannot do ArrangeFasterRCNN! ' +
  928. 'Becasuse the im_info and label_info can not be None!')
  929. im_resize_info = im_info['im_resize_info']
  930. im_id = im_info['im_id']
  931. im_shape = np.array(
  932. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  933. dtype=np.float32)
  934. gt_bbox = label_info['gt_bbox']
  935. gt_class = label_info['gt_class']
  936. is_difficult = label_info['difficult']
  937. outputs = (im, im_resize_info, im_id, im_shape, gt_bbox, gt_class,
  938. is_difficult)
  939. else:
  940. if im_info is None:
  941. raise TypeError('Cannot do ArrangeFasterRCNN! ' +
  942. 'Becasuse the im_info can not be None!')
  943. im_resize_info = im_info['im_resize_info']
  944. im_shape = np.array(
  945. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  946. dtype=np.float32)
  947. outputs = (im, im_resize_info, im_shape)
  948. return outputs
  949. class ArrangeMaskRCNN(DetTransform):
  950. """获取MaskRCNN模型训练/验证/预测所需信息。
  951. Args:
  952. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  953. Raises:
  954. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  955. """
  956. def __init__(self, mode=None):
  957. if mode not in ['train', 'eval', 'test', 'quant']:
  958. raise ValueError(
  959. "mode must be in ['train', 'eval', 'test', 'quant']!")
  960. self.mode = mode
  961. def __call__(self, im, im_info=None, label_info=None):
  962. """
  963. Args:
  964. im (np.ndarray): 图像np.ndarray数据。
  965. im_info (dict, 可选): 存储与图像相关的信息。
  966. label_info (dict, 可选): 存储与标注框相关的信息。
  967. Returns:
  968. tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd, gt_masks),分别对应
  969. 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象、
  970. 真实分割区域;当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape),分别对应图像np.ndarray数据、
  971. 图像相当对于原图的resize信息、图像id、图像大小信息;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),
  972. 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像大小信息。
  973. Raises:
  974. TypeError: 形参数据类型不满足需求。
  975. ValueError: 数据长度不匹配。
  976. """
  977. im = permute(im, False)
  978. if self.mode == 'train':
  979. if im_info is None or label_info is None:
  980. raise TypeError(
  981. 'Cannot do ArrangeTrainMaskRCNN! ' +
  982. 'Becasuse the im_info and label_info can not be None!')
  983. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  984. raise ValueError("gt num mismatch: bbox and class.")
  985. im_resize_info = im_info['im_resize_info']
  986. gt_bbox = label_info['gt_bbox']
  987. gt_class = label_info['gt_class']
  988. is_crowd = label_info['is_crowd']
  989. assert 'gt_poly' in label_info
  990. segms = label_info['gt_poly']
  991. if len(segms) != 0:
  992. assert len(segms) == is_crowd.shape[0]
  993. gt_masks = []
  994. valid = True
  995. for i in range(len(segms)):
  996. segm = segms[i]
  997. gt_segm = []
  998. if is_crowd[i]:
  999. gt_segm.append([[0, 0]])
  1000. else:
  1001. for poly in segm:
  1002. if len(poly) == 0:
  1003. valid = False
  1004. break
  1005. gt_segm.append(np.array(poly).reshape(-1, 2))
  1006. if (not valid) or len(gt_segm) == 0:
  1007. break
  1008. gt_masks.append(gt_segm)
  1009. outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd,
  1010. gt_masks)
  1011. else:
  1012. if im_info is None:
  1013. raise TypeError('Cannot do ArrangeMaskRCNN! ' +
  1014. 'Becasuse the im_info can not be None!')
  1015. im_resize_info = im_info['im_resize_info']
  1016. im_shape = np.array(
  1017. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  1018. dtype=np.float32)
  1019. if self.mode == 'eval':
  1020. im_id = im_info['im_id']
  1021. outputs = (im, im_resize_info, im_id, im_shape)
  1022. else:
  1023. outputs = (im, im_resize_info, im_shape)
  1024. return outputs
  1025. class ArrangeYOLOv3(DetTransform):
  1026. """获取YOLOv3模型训练/验证/预测所需信息。
  1027. Args:
  1028. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  1029. Raises:
  1030. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  1031. """
  1032. def __init__(self, mode=None):
  1033. if mode not in ['train', 'eval', 'test', 'quant']:
  1034. raise ValueError(
  1035. "mode must be in ['train', 'eval', 'test', 'quant']!")
  1036. self.mode = mode
  1037. def __call__(self, im, im_info=None, label_info=None):
  1038. """
  1039. Args:
  1040. im (np.ndarray): 图像np.ndarray数据。
  1041. im_info (dict, 可选): 存储与图像相关的信息。
  1042. label_info (dict, 可选): 存储与标注框相关的信息。
  1043. Returns:
  1044. tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
  1045. 图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
  1046. 当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
  1047. 分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
  1048. 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
  1049. 分别对应图像np.ndarray数据、图像大小信息。
  1050. Raises:
  1051. TypeError: 形参数据类型不满足需求。
  1052. ValueError: 数据长度不匹配。
  1053. """
  1054. im = permute(im, False)
  1055. if self.mode == 'train':
  1056. if im_info is None or label_info is None:
  1057. raise TypeError(
  1058. 'Cannot do ArrangeYolov3! ' +
  1059. 'Becasuse the im_info and label_info can not be None!')
  1060. im_shape = im_info['image_shape']
  1061. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  1062. raise ValueError("gt num mismatch: bbox and class.")
  1063. if len(label_info['gt_bbox']) != len(label_info['gt_score']):
  1064. raise ValueError("gt num mismatch: bbox and score.")
  1065. gt_bbox = np.zeros((50, 4), dtype=im.dtype)
  1066. gt_class = np.zeros((50, ), dtype=np.int32)
  1067. gt_score = np.zeros((50, ), dtype=im.dtype)
  1068. gt_num = min(50, len(label_info['gt_bbox']))
  1069. if gt_num > 0:
  1070. label_info['gt_class'][:gt_num, 0] = label_info[
  1071. 'gt_class'][:gt_num, 0] - 1
  1072. gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
  1073. gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
  1074. gt_score[:gt_num] = label_info['gt_score'][:gt_num, 0]
  1075. # parse [x1, y1, x2, y2] to [x, y, w, h]
  1076. gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
  1077. gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
  1078. outputs = (im, gt_bbox, gt_class, gt_score, im_shape)
  1079. elif self.mode == 'eval':
  1080. if im_info is None or label_info is None:
  1081. raise TypeError(
  1082. 'Cannot do ArrangeYolov3! ' +
  1083. 'Becasuse the im_info and label_info can not be None!')
  1084. im_shape = im_info['image_shape']
  1085. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  1086. raise ValueError("gt num mismatch: bbox and class.")
  1087. im_id = im_info['im_id']
  1088. gt_bbox = np.zeros((50, 4), dtype=im.dtype)
  1089. gt_class = np.zeros((50, ), dtype=np.int32)
  1090. difficult = np.zeros((50, ), dtype=np.int32)
  1091. gt_num = min(50, len(label_info['gt_bbox']))
  1092. if gt_num > 0:
  1093. label_info['gt_class'][:gt_num, 0] = label_info[
  1094. 'gt_class'][:gt_num, 0] - 1
  1095. gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
  1096. gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
  1097. difficult[:gt_num] = label_info['difficult'][:gt_num, 0]
  1098. outputs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
  1099. else:
  1100. if im_info is None:
  1101. raise TypeError('Cannot do ArrangeYolov3! ' +
  1102. 'Becasuse the im_info can not be None!')
  1103. im_shape = im_info['image_shape']
  1104. outputs = (im, im_shape)
  1105. return outputs
  1106. class ComposedRCNNTransforms(Compose):
  1107. """ RCNN模型(faster-rcnn/mask-rcnn)图像处理流程,具体如下,
  1108. 训练阶段:
  1109. 1. 随机以0.5的概率将图像水平翻转
  1110. 2. 图像归一化
  1111. 3. 图像按比例Resize,scale计算方式如下
  1112. scale = min_max_size[0] / short_size_of_image
  1113. if max_size_of_image * scale > min_max_size[1]:
  1114. scale = min_max_size[1] / max_size_of_image
  1115. 4. 将3步骤的长宽进行padding,使得长宽为32的倍数
  1116. 验证阶段:
  1117. 1. 图像归一化
  1118. 2. 图像按比例Resize,scale计算方式同上训练阶段
  1119. 3. 将2步骤的长宽进行padding,使得长宽为32的倍数
  1120. Args:
  1121. mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
  1122. min_max_size(list): 图像在缩放时,最小边和最大边的约束条件
  1123. mean(list): 图像均值
  1124. std(list): 图像方差
  1125. """
  1126. def __init__(self,
  1127. mode,
  1128. min_max_size=[800, 1333],
  1129. mean=[0.485, 0.456, 0.406],
  1130. std=[0.229, 0.224, 0.225]):
  1131. if mode == 'train':
  1132. # 训练时的transforms,包含数据增强
  1133. transforms = [
  1134. RandomHorizontalFlip(prob=0.5), Normalize(
  1135. mean=mean, std=std), ResizeByShort(
  1136. short_size=min_max_size[0], max_size=min_max_size[1]),
  1137. Padding(coarsest_stride=32)
  1138. ]
  1139. else:
  1140. # 验证/预测时的transforms
  1141. transforms = [
  1142. Normalize(
  1143. mean=mean, std=std), ResizeByShort(
  1144. short_size=min_max_size[0], max_size=min_max_size[1]),
  1145. Padding(coarsest_stride=32)
  1146. ]
  1147. super(ComposedRCNNTransforms, self).__init__(transforms)
  1148. class ComposedYOLOTransforms(Compose):
  1149. """YOLOv3模型的图像预处理流程,具体如下,
  1150. 训练阶段:
  1151. 1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
  1152. 2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
  1153. 3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
  1154. 4. 随机裁剪图像
  1155. 5. 将4步骤的输出图像Resize成shape参数的大小
  1156. 6. 随机0.5的概率水平翻转图像
  1157. 7. 图像归一化
  1158. 验证/预测阶段:
  1159. 1. 将图像Resize成shape参数大小
  1160. 2. 图像归一化
  1161. Args:
  1162. mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
  1163. shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
  1164. mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略
  1165. mean(list): 图像均值
  1166. std(list): 图像方差
  1167. """
  1168. def __init__(self,
  1169. mode,
  1170. shape=[608, 608],
  1171. mixup_epoch=250,
  1172. mean=[0.485, 0.456, 0.406],
  1173. std=[0.229, 0.224, 0.225]):
  1174. width = shape
  1175. if isinstance(shape, list):
  1176. if shape[0] != shape[1]:
  1177. raise Exception(
  1178. "In YOLOv3 model, width and height should be equal")
  1179. width = shape[0]
  1180. if width % 32 != 0:
  1181. raise Exception(
  1182. "In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
  1183. )
  1184. if mode == 'train':
  1185. # 训练时的transforms,包含数据增强
  1186. transforms = [
  1187. MixupImage(mixup_epoch=mixup_epoch), RandomDistort(),
  1188. RandomExpand(), RandomCrop(), Resize(
  1189. target_size=width,
  1190. interp='RANDOM'), RandomHorizontalFlip(), Normalize(
  1191. mean=mean, std=std)
  1192. ]
  1193. else:
  1194. # 验证/预测时的transforms
  1195. transforms = [
  1196. Resize(
  1197. target_size=width, interp='CUBIC'), Normalize(
  1198. mean=mean, std=std)
  1199. ]
  1200. super(ComposedYOLOTransforms, self).__init__(transforms)