| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- from six import text_type as _text_type
- import argparse
- import sys
- def arg_parser():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model_dir",
- "-m",
- type=_text_type,
- default=None,
- help="define model directory path")
- parser.add_argument(
- "--save_dir",
- "-s",
- type=_text_type,
- default=None,
- help="path to save inference model")
- parser.add_argument(
- "--version",
- "-v",
- action="store_true",
- default=False,
- help="get version of PaddleX")
- parser.add_argument(
- "--export_inference",
- "-e",
- action="store_true",
- default=False,
- help="export inference model for C++/Python deployment")
- parser.add_argument(
- "--export_onnx",
- "-eo",
- action="store_true",
- default=False,
- help="export onnx model for deployment")
- parser.add_argument(
- "--fixed_input_shape",
- "-fs",
- default=None,
- help="export inference model with fixed input shape:[w,h]")
- return parser
- def main():
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = ""
- import paddlex as pdx
- if len(sys.argv) < 2:
- print("Use command 'paddlex -h` to print the help information\n")
- return
- parser = arg_parser()
- args = parser.parse_args()
- if args.version:
- print("PaddleX-{}".format(pdx.__version__))
- print("Repo: https://github.com/PaddlePaddle/PaddleX.git")
- print("Email: paddlex@baidu.com")
- return
- if args.export_inference:
- assert args.model_dir is not None, "--model_dir should be defined while exporting inference model"
- assert args.save_dir is not None, "--save_dir should be defined to save inference model"
- fixed_input_shape = None
- if args.fixed_input_shape is not None:
- fixed_input_shape = eval(args.fixed_input_shape)
- assert len(
- fixed_input_shape
- ) == 2, "len of fixed input shape must == 2, such as [224,224]"
- else:
- fixed_input_shape = None
- model = pdx.load_model(args.model_dir, fixed_input_shape)
- model.export_inference_model(args.save_dir)
- if args.export_onnx:
- assert args.model_dir is not None, "--model_dir should be defined while exporting onnx model"
- assert args.save_dir is not None, "--save_dir should be defined to create onnx model"
- assert args.fixed_input_shape is not None, "--fixed_input_shape should be defined [w,h] to create onnx model, such as [224,224]"
- fixed_input_shape = []
- if args.fixed_input_shape is not None:
- fixed_input_shape = eval(args.fixed_input_shape)
- assert len(
- fixed_input_shape
- ) == 2, "len of fixed input shape must == 2, such as [224,224]"
- model = pdx.load_model(args.model_dir, fixed_input_shape)
- pdx.convertor.export_onnx_model(model, args.save_dir)
- if __name__ == "__main__":
- main()
|