| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ...utils.func_register import FuncRegister
- from ...modules.object_detection.model_list import MODELS
- from ..components import *
- from ..results import DetResult
- from .base import BasicPredictor
- class DetPredictor(BasicPredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def _build_components(self):
- self._add_component(ReadImage(format="RGB"))
- for cfg in self.config["Preprocess"]:
- tf_key = cfg["type"]
- func = self._FUNC_MAP[tf_key]
- cfg.pop("type")
- args = cfg
- op = func(self, **args) if args else func(self)
- self._add_component(op)
- predictor = ImageDetPredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=self.pp_option,
- )
- model_names = ["DETR", "RCNN", "YOLOv3", "CenterNet"]
- if any(name in self.model_name for name in model_names):
- predictor.set_inputs(
- {
- "img": "img",
- "scale_factors": "scale_factors",
- "img_size": "img_size",
- }
- )
- if self.model_name in ["BlazeFace", "BlazeFace-FPN-SSH"]:
- predictor.set_inputs(
- {
- "img": "img",
- "img_size": "img_size",
- }
- )
- self._add_component(
- [
- predictor,
- DetPostProcess(
- threshold=self.config["draw_threshold"],
- labels=self.config["label_list"],
- ),
- ]
- )
- @register("Resize")
- def build_resize(self, target_size, keep_ratio=False, interp=2):
- assert target_size
- if isinstance(interp, int):
- interp = {
- 0: "NEAREST",
- 1: "LINEAR",
- 2: "CUBIC",
- 3: "AREA",
- 4: "LANCZOS4",
- }[interp]
- op = Resize(target_size=target_size[::-1], keep_ratio=keep_ratio, interp=interp)
- return op
- @register("NormalizeImage")
- def build_normalize(
- self,
- norm_type=None,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- is_scale=True,
- ):
- if is_scale:
- scale = 1.0 / 255.0
- else:
- scale = 1
- if not norm_type or norm_type == "none":
- norm_type = "mean_std"
- if norm_type != "mean_std":
- mean = 0
- std = 1
- return Normalize(scale=scale, mean=mean, std=std)
- @register("Permute")
- def build_to_chw(self):
- return ToCHWImage()
- @register("Pad")
- def build_pad(self, fill_value=None, size=None):
- if fill_value is None:
- fill_value = [127.5, 127.5, 127.5]
- if size is None:
- size = [3, 640, 640]
- return DetPad(size=size, fill_value=fill_value)
- @register("PadStride")
- def build_pad_stride(self, stride=32):
- return PadStride(stride=stride)
- @register("WarpAffine")
- def build_warp_affine(self, input_h=512, input_w=512, keep_res=True):
- return WarpAffine(input_h=input_h, input_w=input_w, keep_res=keep_res)
- def _pack_res(self, single):
- keys = ["input_path", "boxes"]
- return DetResult({key: single[key] for key in keys})
|