| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import json
- from .....utils.file_interface import custom_open
- from .....utils.errors import ConvertFailedError
- def check_src_dataset(root_dir, dataset_type):
- """check src dataset format validity"""
- if dataset_type in ("LabelMe"):
- anno_suffix = ".json"
- else:
- raise ConvertFailedError(
- message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 LabelMe 格式。"
- )
- err_msg_prefix = f"数据格式转换失败!请参考上述`{dataset_type}格式数据集示例`检查待转换数据集格式。"
- for anno in ["label.txt", "annotations", "images"]:
- src_anno_path = os.path.join(root_dir, anno)
- if not os.path.exists(src_anno_path):
- raise ConvertFailedError(
- message=f"{err_msg_prefix}保证{src_anno_path}文件存在。"
- )
- return None
- def convert(dataset_type, input_dir):
- """convert dataset to multilabel format"""
- # check format validity
- check_src_dataset(input_dir, dataset_type)
- if dataset_type in ("LabelMe"):
- convert_labelme_dataset(input_dir)
- else:
- raise ConvertFailedError(
- message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 LabelMe 格式。"
- )
- def convert_labelme_dataset(root_dir):
- image_dir = os.path.join(root_dir, "images")
- anno_path = os.path.join(root_dir, "annotations")
- label_path = os.path.join(root_dir, "label.txt")
- train_rate = 50
- gallery_rate = 30
- query_rate = 20
- tags = ["train", "gallery", "query"]
- label_dict = {}
- image_files = []
- with custom_open(label_path, "r") as f:
- lines = f.readlines()
- for idx, line in enumerate(lines):
- line = line.strip()
- label_dict[line] = str(idx)
- for json_file in os.listdir(anno_path):
- with custom_open(os.path.join(anno_path, json_file), "r") as f:
- data = json.load(f)
- filename = data["imagePath"].strip().split("/")[2]
- image_path = os.path.join("images", filename)
- for label, value in data["flags"].items():
- if value:
- image_files.append(f"{image_path} {label_dict[label]}\n")
- start = 0
- image_num = len(image_files)
- rate_list = [train_rate, gallery_rate, query_rate]
- for i, tag in enumerate(tags):
- rate = rate_list[i]
- if rate == 0:
- continue
- end = start + round(image_num * rate / 100)
- if sum(rate_list[i + 1 :]) == 0:
- end = image_num
- txt_file = os.path.abspath(os.path.join(root_dir, tag + ".txt"))
- with custom_open(txt_file, "w") as f:
- m = 0
- for id in range(start, end):
- m += 1
- f.write(image_files[id])
- start = end
|