| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import yaml
- from ..ts_base.config import BaseTSConfig
- from ....utils.misc import abspath
- class LongForecastConfig(BaseTSConfig):
- """ Long Forecast Config """
- def update_input_len(self, seq_len: int):
- """
- upadte the input sequence length
- Args:
- seq_len (int): input length
- Raises:
- TypeError: if seq_len is not dict, raising TypeError
- """
- if 'seq_len' not in self:
- raise RuntimeError(
- "Not able to update seq_len, because no seq_len config was found."
- )
- self.set_val('seq_len', seq_len)
- def update_predict_len(self, predict_len: int):
- """
- updaet the predict sequence length
- Args:
- predict_len (int): predict length
- Raises:
- RuntimeError: if predict_len is not set, raising RuntimeError
- """
- if 'predict_len' not in self:
- raise RuntimeError(
- "Not able to update predict_len, because no predict_len config was found."
- )
- self.set_val('predict_len', predict_len)
- def update_sampling_stride(self, sampling_stride: int):
- """
- updaet the sampling stride of sequence to reduce the training time
- Args:
- sampling_stride (int): sampling rate
- Raises:
- RuntimeError: if sampling stride is not set, raising RuntimeError
- """
- if 'sampling_stride' not in self:
- raise RuntimeError(
- "Not able to update sampling_stride, because no sampling_stride config was found."
- )
- self.set_val('sampling_stride', sampling_stride)
- def update_dataset(self, dataset_dir: str, dataset_type: str=None):
- """
- upadte the dataset
- Args:
- dataset_dir (str): dataset root path
- dataset_type (str, optional): type to set for dataset. Default='TSDataset'
- """
- if dataset_type is None:
- dataset_type = 'TSDataset'
- dataset_dir = abspath(dataset_dir)
- ds_cfg = self._make_custom_dataset_config(dataset_dir)
- self.update(ds_cfg)
- def update_basic_info(self, info_params: dict):
- """
- update basic info including time_col, freq, target_cols.
- Args:
- info_params (dict): upadte basic info
- Raises:
- TypeError: if info_params is not dict, raising TypeError
- """
- if isinstance(info_params, dict):
- self.update({'info_params': info_params})
- else:
- raise TypeError("`info_params` must be dict.")
- def update_patience(self, patience: int):
- """
- update patience.
- Args:
- patience (int): upadte patience
- Raises:
- RuntimeError: if patience is not found, raising RuntimeError
- """
- if 'patience' not in self.model['model_cfg']:
- raise RuntimeError(
- "Not able to update patience, because no patience config was found."
- )
- self.model['model_cfg']['patience'] = patience
- def _make_custom_dataset_config(self, dataset_root_path: str):
- """construct the dataset config that meets the format requirements
- Args:
- dataset_root_path (str): the root directory of dataset.
- Returns:
- dict: the dataset config.
- """
- ds_cfg = {
- 'dataset': {
- 'name': 'TSDataset',
- 'dataset_root': dataset_root_path,
- 'train_path': os.path.join(dataset_root_path, 'train.csv'),
- 'val_path': os.path.join(dataset_root_path, 'val.csv'),
- },
- }
- return ds_cfg
|