| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # coding: utf8
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import argparse
- import paddlex as pdx
- from paddlex.seg import transforms
- def parse_args():
- parser = argparse.ArgumentParser(description='HumanSeg training')
- parser.add_argument(
- '--model_dir',
- dest='model_dir',
- help='Model path for quant',
- type=str,
- default='output/best_model')
- parser.add_argument(
- '--batch_size',
- dest='batch_size',
- help='Mini batch size',
- type=int,
- default=1)
- parser.add_argument(
- '--batch_nums',
- dest='batch_nums',
- help='Batch number for quant',
- type=int,
- default=10)
- parser.add_argument(
- '--data_dir',
- dest='data_dir',
- help='the root directory of dataset',
- type=str)
- parser.add_argument(
- '--quant_list',
- dest='quant_list',
- help='Image file list for model quantization, it can be vat.txt or train.txt',
- type=str,
- default=None)
- parser.add_argument(
- '--save_dir',
- dest='save_dir',
- help='The directory for saving the quant model',
- type=str,
- default='./output/quant_offline')
- parser.add_argument(
- "--image_shape",
- dest="image_shape",
- help="The image shape for net inputs.",
- nargs=2,
- default=[192, 192],
- type=int)
- return parser.parse_args()
- def evaluate(args):
- eval_transforms = transforms.Compose(
- [transforms.Resize(args.image_shape), transforms.Normalize()])
- eval_dataset = pdx.datasets.SegDataset(
- data_dir=args.data_dir,
- file_list=args.quant_list,
- transforms=eval_transforms)
- model = pdx.load_model(args.model_dir)
- pdx.slim.export_quant_model(model, eval_dataset, args.batch_size,
- args.batch_nums, args.save_dir)
- if __name__ == '__main__':
- args = parse_args()
- evaluate(args)
|