| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <math.h>
- #include <omp.h>
- #include <algorithm>
- #include <fstream>
- #include <cstring>
- #include "include/paddlex/paddlex.h"
- namespace PaddleX {
- void Model::create_predictor(const std::string& model_dir,
- bool use_gpu,
- bool use_trt,
- bool use_mkl,
- int gpu_id,
- std::string key,
- int thread_num,
- bool use_ir_optim) {
- paddle::AnalysisConfig config;
- std::string model_file = model_dir + OS_PATH_SEP + "__model__";
- std::string params_file = model_dir + OS_PATH_SEP + "__params__";
- std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml";
- std::string yaml_input = "";
- #ifdef WITH_ENCRYPTION
- if (key != "") {
- model_file = model_dir + OS_PATH_SEP + "__model__.encrypted";
- params_file = model_dir + OS_PATH_SEP + "__params__.encrypted";
- yaml_file = model_dir + OS_PATH_SEP + "model.yml.encrypted";
- paddle_security_load_model(
- &config, key.c_str(), model_file.c_str(), params_file.c_str());
- yaml_input = decrypt_file(yaml_file.c_str(), key.c_str());
- }
- #endif
- if (yaml_input == "") {
- // read yaml file
- std::ifstream yaml_fin(yaml_file);
- yaml_fin.seekg(0, std::ios::end);
- size_t yaml_file_size = yaml_fin.tellg();
- yaml_input.assign(yaml_file_size, ' ');
- yaml_fin.seekg(0);
- yaml_fin.read(&yaml_input[0], yaml_file_size);
- }
- // load yaml file
- if (!load_config(yaml_input)) {
- std::cerr << "Parse file 'model.yml' failed!" << std::endl;
- exit(-1);
- }
- if (key == "") {
- config.SetModel(model_file, params_file);
- }
- if (use_mkl && name != "HRNet" && name != "DeepLabv3p") {
- config.EnableMKLDNN();
- config.SetCpuMathLibraryNumThreads(12);
- }
- if (use_gpu) {
- config.EnableUseGpu(100, gpu_id);
- } else {
- config.DisableGpu();
- }
- config.SwitchUseFeedFetchOps(false);
- config.SwitchSpecifyInputNames(true);
- // enable graph Optim
- #if defined(__arm__) || defined(__aarch64__)
- config.SwitchIrOptim(false);
- #else
- config.SwitchIrOptim(use_ir_optim);
- #endif
- // enable Memory Optim
- config.EnableMemoryOptim();
- if (use_trt) {
- config.EnableTensorRtEngine(
- 1 << 20 /* workspace_size*/,
- 32 /* max_batch_size*/,
- 20 /* min_subgraph_size*/,
- paddle::AnalysisConfig::Precision::kFloat32 /* precision*/,
- true /* use_static*/,
- false /* use_calib_mode*/);
- }
- predictor_ = std::move(CreatePaddlePredictor(config));
- }
- bool Model::load_config(const std::string& yaml_input) {
- YAML::Node config = YAML::Load(yaml_input);
- type = config["_Attributes"]["model_type"].as<std::string>();
- name = config["Model"].as<std::string>();
- std::string version = config["version"].as<std::string>();
- if (version[0] == '0') {
- std::cerr << "[Init] Version of the loaded model is lower than 1.0.0, "
- << "deployment cannot be done, please refer to "
- << "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs"
- << "/tutorials/deploy/upgrade_version.md "
- << "to transfer version." << std::endl;
- return false;
- }
- bool to_rgb = true;
- if (config["TransformsMode"].IsDefined()) {
- std::string mode = config["TransformsMode"].as<std::string>();
- if (mode == "BGR") {
- to_rgb = false;
- } else if (mode != "RGB") {
- std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
- << std::endl;
- return false;
- }
- }
- // build data preprocess stream
- transforms_.Init(config["Transforms"], to_rgb);
- // read label list
- labels.clear();
- for (const auto& item : config["_Attributes"]["labels"]) {
- int index = labels.size();
- labels[index] = item.as<std::string>();
- }
- return true;
- }
- bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) {
- cv::Mat im = input_im.clone();
- if (!transforms_.Run(&im, blob)) {
- return false;
- }
- return true;
- }
- // use openmp
- bool Model::preprocess(const std::vector<cv::Mat>& input_im_batch,
- std::vector<ImageBlob>* blob_batch,
- int thread_num) {
- int batch_size = input_im_batch.size();
- bool success = true;
- thread_num = std::min(thread_num, batch_size);
- #pragma omp parallel for num_threads(thread_num)
- for (int i = 0; i < input_im_batch.size(); ++i) {
- cv::Mat im = input_im_batch[i].clone();
- if (!transforms_.Run(&im, &(*blob_batch)[i])) {
- success = false;
- }
- }
- return success;
- }
- bool Model::predict(const cv::Mat& im, ClsResult* result) {
- inputs_.clear();
- if (type == "detector") {
- std::cerr << "Loading model is a 'detector', DetResult should be passed to "
- "function predict()!"
- "to function predict()!" << std::endl;
- return false;
- }
- // im preprocess
- if (!preprocess(im, &inputs_)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- // predict
- auto in_tensor = predictor_->GetInputTensor("image");
- int h = inputs_.new_im_size_[0];
- int w = inputs_.new_im_size_[1];
- in_tensor->Reshape({1, 3, h, w});
- in_tensor->copy_from_cpu(inputs_.im_data_.data());
- predictor_->ZeroCopyRun();
- // get result
- auto output_names = predictor_->GetOutputNames();
- auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
- std::vector<int> output_shape = output_tensor->shape();
- int size = 1;
- for (const auto& i : output_shape) {
- size *= i;
- }
- outputs_.resize(size);
- output_tensor->copy_to_cpu(outputs_.data());
- // postprocess
- auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_));
- result->category_id = std::distance(std::begin(outputs_), ptr);
- result->score = *ptr;
- result->category = labels[result->category_id];
- return true;
- }
- bool Model::predict(const std::vector<cv::Mat>& im_batch,
- std::vector<ClsResult>* results,
- int thread_num) {
- for (auto& inputs : inputs_batch_) {
- inputs.clear();
- }
- if (type == "detector") {
- std::cerr << "Loading model is a 'detector', DetResult should be passed to "
- "function predict()!" << std::endl;
- return false;
- } else if (type == "segmenter") {
- std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- }
- inputs_batch_.assign(im_batch.size(), ImageBlob());
- // preprocess
- if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- // predict
- int batch_size = im_batch.size();
- auto in_tensor = predictor_->GetInputTensor("image");
- int h = inputs_batch_[0].new_im_size_[0];
- int w = inputs_batch_[0].new_im_size_[1];
- in_tensor->Reshape({batch_size, 3, h, w});
- std::vector<float> inputs_data(batch_size * 3 * h * w);
- for (int i = 0; i < batch_size; ++i) {
- std::copy(inputs_batch_[i].im_data_.begin(),
- inputs_batch_[i].im_data_.end(),
- inputs_data.begin() + i * 3 * h * w);
- }
- in_tensor->copy_from_cpu(inputs_data.data());
- // in_tensor->copy_from_cpu(inputs_.im_data_.data());
- predictor_->ZeroCopyRun();
- // get result
- auto output_names = predictor_->GetOutputNames();
- auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
- std::vector<int> output_shape = output_tensor->shape();
- int size = 1;
- for (const auto& i : output_shape) {
- size *= i;
- }
- outputs_.resize(size);
- output_tensor->copy_to_cpu(outputs_.data());
- // postprocess
- (*results).clear();
- (*results).resize(batch_size);
- int single_batch_size = size / batch_size;
- for (int i = 0; i < batch_size; ++i) {
- auto start_ptr = std::begin(outputs_);
- auto end_ptr = std::begin(outputs_);
- std::advance(start_ptr, i * single_batch_size);
- std::advance(end_ptr, (i + 1) * single_batch_size);
- auto ptr = std::max_element(start_ptr, end_ptr);
- (*results)[i].category_id = std::distance(start_ptr, ptr);
- (*results)[i].score = *ptr;
- (*results)[i].category = labels[(*results)[i].category_id];
- }
- return true;
- }
- bool Model::predict(const cv::Mat& im, DetResult* result) {
- inputs_.clear();
- result->clear();
- if (type == "classifier") {
- std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- } else if (type == "segmenter") {
- std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- }
- // preprocess
- if (!preprocess(im, &inputs_)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- int h = inputs_.new_im_size_[0];
- int w = inputs_.new_im_size_[1];
- auto im_tensor = predictor_->GetInputTensor("image");
- im_tensor->Reshape({1, 3, h, w});
- im_tensor->copy_from_cpu(inputs_.im_data_.data());
- if (name == "YOLOv3") {
- auto im_size_tensor = predictor_->GetInputTensor("im_size");
- im_size_tensor->Reshape({1, 2});
- im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
- } else if (name == "FasterRCNN" || name == "MaskRCNN") {
- auto im_info_tensor = predictor_->GetInputTensor("im_info");
- auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
- im_info_tensor->Reshape({1, 3});
- im_shape_tensor->Reshape({1, 3});
- float ori_h = static_cast<float>(inputs_.ori_im_size_[0]);
- float ori_w = static_cast<float>(inputs_.ori_im_size_[1]);
- float new_h = static_cast<float>(inputs_.new_im_size_[0]);
- float new_w = static_cast<float>(inputs_.new_im_size_[1]);
- float im_info[] = {new_h, new_w, inputs_.scale};
- float im_shape[] = {ori_h, ori_w, 1.0};
- im_info_tensor->copy_from_cpu(im_info);
- im_shape_tensor->copy_from_cpu(im_shape);
- }
- // predict
- predictor_->ZeroCopyRun();
- std::vector<float> output_box;
- auto output_names = predictor_->GetOutputNames();
- auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
- std::vector<int> output_box_shape = output_box_tensor->shape();
- int size = 1;
- for (const auto& i : output_box_shape) {
- size *= i;
- }
- output_box.resize(size);
- output_box_tensor->copy_to_cpu(output_box.data());
- if (size < 6) {
- std::cerr << "[WARNING] There's no object detected." << std::endl;
- return true;
- }
- int num_boxes = size / 6;
- // box postprocess
- for (int i = 0; i < num_boxes; ++i) {
- Box box;
- box.category_id = static_cast<int>(round(output_box[i * 6]));
- box.category = labels[box.category_id];
- box.score = output_box[i * 6 + 1];
- float xmin = output_box[i * 6 + 2];
- float ymin = output_box[i * 6 + 3];
- float xmax = output_box[i * 6 + 4];
- float ymax = output_box[i * 6 + 5];
- float w = xmax - xmin + 1;
- float h = ymax - ymin + 1;
- box.coordinate = {xmin, ymin, w, h};
- result->boxes.push_back(std::move(box));
- }
- // mask postprocess
- if (name == "MaskRCNN") {
- std::vector<float> output_mask;
- auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
- std::vector<int> output_mask_shape = output_mask_tensor->shape();
- int masks_size = 1;
- for (const auto& i : output_mask_shape) {
- masks_size *= i;
- }
- int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
- int classes = output_mask_shape[1];
- output_mask.resize(masks_size);
- output_mask_tensor->copy_to_cpu(output_mask.data());
- result->mask_resolution = output_mask_shape[2];
- for (int i = 0; i < result->boxes.size(); ++i) {
- Box* box = &result->boxes[i];
- box->mask.shape = {static_cast<int>(box->coordinate[2]),
- static_cast<int>(box->coordinate[3])};
- auto begin_mask =
- output_mask.begin() + (i * classes + box->category_id) * mask_pixels;
- cv::Mat bin_mask(result->mask_resolution,
- result->mask_resolution,
- CV_32FC1,
- begin_mask);
- cv::resize(bin_mask,
- bin_mask,
- cv::Size(box->mask.shape[0], box->mask.shape[1]));
- cv::threshold(bin_mask, bin_mask, 0.5, 1, cv::THRESH_BINARY);
- auto mask_int_begin = bin_mask.data;
- auto mask_int_end =
- mask_int_begin + box->mask.shape[0] * box->mask.shape[1];
- box->mask.data.assign(mask_int_begin, mask_int_end);
- }
- }
- return true;
- }
- bool Model::predict(const std::vector<cv::Mat>& im_batch,
- std::vector<DetResult>* results,
- int thread_num) {
- for (auto& inputs : inputs_batch_) {
- inputs.clear();
- }
- if (type == "classifier") {
- std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- } else if (type == "segmenter") {
- std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- }
- inputs_batch_.assign(im_batch.size(), ImageBlob());
- int batch_size = im_batch.size();
- // preprocess
- if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- // RCNN model padding
- if (batch_size > 1) {
- if (name == "FasterRCNN" || name == "MaskRCNN") {
- int max_h = -1;
- int max_w = -1;
- for (int i = 0; i < batch_size; ++i) {
- max_h = std::max(max_h, inputs_batch_[i].new_im_size_[0]);
- max_w = std::max(max_w, inputs_batch_[i].new_im_size_[1]);
- // std::cout << "(" << inputs_batch_[i].new_im_size_[0]
- // << ", " << inputs_batch_[i].new_im_size_[1]
- // << ")" << std::endl;
- }
- thread_num = std::min(thread_num, batch_size);
- #pragma omp parallel for num_threads(thread_num)
- for (int i = 0; i < batch_size; ++i) {
- int h = inputs_batch_[i].new_im_size_[0];
- int w = inputs_batch_[i].new_im_size_[1];
- int c = im_batch[i].channels();
- if (max_h != h || max_w != w) {
- std::vector<float> temp_buffer(c * max_h * max_w);
- float* temp_ptr = temp_buffer.data();
- float* ptr = inputs_batch_[i].im_data_.data();
- for (int cur_channel = c - 1; cur_channel >= 0; --cur_channel) {
- int ori_pos = cur_channel * h * w + (h - 1) * w;
- int des_pos = cur_channel * max_h * max_w + (h - 1) * max_w;
- int last_pos = cur_channel * h * w;
- for (; ori_pos >= last_pos; ori_pos -= w, des_pos -= max_w) {
- memcpy(temp_ptr + des_pos, ptr + ori_pos, w * sizeof(float));
- }
- }
- inputs_batch_[i].im_data_.swap(temp_buffer);
- inputs_batch_[i].new_im_size_[0] = max_h;
- inputs_batch_[i].new_im_size_[1] = max_w;
- }
- }
- }
- }
- int h = inputs_batch_[0].new_im_size_[0];
- int w = inputs_batch_[0].new_im_size_[1];
- auto im_tensor = predictor_->GetInputTensor("image");
- im_tensor->Reshape({batch_size, 3, h, w});
- std::vector<float> inputs_data(batch_size * 3 * h * w);
- for (int i = 0; i < batch_size; ++i) {
- std::copy(inputs_batch_[i].im_data_.begin(),
- inputs_batch_[i].im_data_.end(),
- inputs_data.begin() + i * 3 * h * w);
- }
- im_tensor->copy_from_cpu(inputs_data.data());
- if (name == "YOLOv3") {
- auto im_size_tensor = predictor_->GetInputTensor("im_size");
- im_size_tensor->Reshape({batch_size, 2});
- std::vector<int> inputs_data_size(batch_size * 2);
- for (int i = 0; i < batch_size; ++i) {
- std::copy(inputs_batch_[i].ori_im_size_.begin(),
- inputs_batch_[i].ori_im_size_.end(),
- inputs_data_size.begin() + 2 * i);
- }
- im_size_tensor->copy_from_cpu(inputs_data_size.data());
- } else if (name == "FasterRCNN" || name == "MaskRCNN") {
- auto im_info_tensor = predictor_->GetInputTensor("im_info");
- auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
- im_info_tensor->Reshape({batch_size, 3});
- im_shape_tensor->Reshape({batch_size, 3});
- std::vector<float> im_info(3 * batch_size);
- std::vector<float> im_shape(3 * batch_size);
- for (int i = 0; i < batch_size; ++i) {
- float ori_h = static_cast<float>(inputs_batch_[i].ori_im_size_[0]);
- float ori_w = static_cast<float>(inputs_batch_[i].ori_im_size_[1]);
- float new_h = static_cast<float>(inputs_batch_[i].new_im_size_[0]);
- float new_w = static_cast<float>(inputs_batch_[i].new_im_size_[1]);
- im_info[i * 3] = new_h;
- im_info[i * 3 + 1] = new_w;
- im_info[i * 3 + 2] = inputs_batch_[i].scale;
- im_shape[i * 3] = ori_h;
- im_shape[i * 3 + 1] = ori_w;
- im_shape[i * 3 + 2] = 1.0;
- }
- im_info_tensor->copy_from_cpu(im_info.data());
- im_shape_tensor->copy_from_cpu(im_shape.data());
- }
- // predict
- predictor_->ZeroCopyRun();
- // get all box
- std::vector<float> output_box;
- auto output_names = predictor_->GetOutputNames();
- auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
- std::vector<int> output_box_shape = output_box_tensor->shape();
- int size = 1;
- for (const auto& i : output_box_shape) {
- size *= i;
- }
- output_box.resize(size);
- output_box_tensor->copy_to_cpu(output_box.data());
- if (size < 6) {
- std::cerr << "[WARNING] There's no object detected." << std::endl;
- return true;
- }
- auto lod_vector = output_box_tensor->lod();
- int num_boxes = size / 6;
- // box postprocess
- (*results).clear();
- (*results).resize(batch_size);
- for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
- for (int j = lod_vector[0][i]; j < lod_vector[0][i + 1]; ++j) {
- Box box;
- box.category_id = static_cast<int>(round(output_box[j * 6]));
- box.category = labels[box.category_id];
- box.score = output_box[j * 6 + 1];
- float xmin = output_box[j * 6 + 2];
- float ymin = output_box[j * 6 + 3];
- float xmax = output_box[j * 6 + 4];
- float ymax = output_box[j * 6 + 5];
- float w = xmax - xmin + 1;
- float h = ymax - ymin + 1;
- box.coordinate = {xmin, ymin, w, h};
- (*results)[i].boxes.push_back(std::move(box));
- }
- }
- // mask postprocess
- if (name == "MaskRCNN") {
- std::vector<float> output_mask;
- auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
- std::vector<int> output_mask_shape = output_mask_tensor->shape();
- int masks_size = 1;
- for (const auto& i : output_mask_shape) {
- masks_size *= i;
- }
- int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
- int classes = output_mask_shape[1];
- output_mask.resize(masks_size);
- output_mask_tensor->copy_to_cpu(output_mask.data());
- int mask_idx = 0;
- for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
- (*results)[i].mask_resolution = output_mask_shape[2];
- for (int j = 0; j < (*results)[i].boxes.size(); ++j) {
- Box* box = &result->boxes[i];
- int category_id = box->category_id;
- box->mask.shape = {static_cast<int>(box->coordinate[2]),
- static_cast<int>(box->coordinate[3])};
- auto begin_mask =
- output_mask.begin() + (i * classes + box->category_id) * mask_pixels;
- cv::Mat bin_mask(result->mask_resolution,
- result->mask_resolution,
- CV_32FC1,
- begin_mask);
- cv::resize(bin_mask,
- bin_mask,
- cv::Size(box->mask.shape[0], box->mask.shape[1]));
- cv::threshold(bin_mask, bin_mask, 0.5, 1, cv::THRESH_BINARY);
- auto mask_int_begin = bin_mask.data;
- auto mask_int_end =
- mask_int_begin + box->mask.shape[0] * box->mask.shape[1];
- box->mask.data.assign(mask_int_begin, mask_int_end);
- mask_idx++;
- }
- }
- }
- return true;
- }
- bool Model::predict(const cv::Mat& im, SegResult* result) {
- result->clear();
- inputs_.clear();
- if (type == "classifier") {
- std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- } else if (type == "detector") {
- std::cerr << "Loading model is a 'detector', DetResult should be passed to "
- "function predict()!" << std::endl;
- return false;
- }
- // preprocess
- if (!preprocess(im, &inputs_)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- int h = inputs_.new_im_size_[0];
- int w = inputs_.new_im_size_[1];
- auto im_tensor = predictor_->GetInputTensor("image");
- im_tensor->Reshape({1, 3, h, w});
- im_tensor->copy_from_cpu(inputs_.im_data_.data());
- // predict
- predictor_->ZeroCopyRun();
- // get labelmap
- auto output_names = predictor_->GetOutputNames();
- auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
- std::vector<int> output_label_shape = output_label_tensor->shape();
- int size = 1;
- for (const auto& i : output_label_shape) {
- size *= i;
- result->label_map.shape.push_back(i);
- }
- result->label_map.data.resize(size);
- output_label_tensor->copy_to_cpu(result->label_map.data.data());
- // get scoremap
- auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
- std::vector<int> output_score_shape = output_score_tensor->shape();
- size = 1;
- for (const auto& i : output_score_shape) {
- size *= i;
- result->score_map.shape.push_back(i);
- }
- result->score_map.data.resize(size);
- output_score_tensor->copy_to_cpu(result->score_map.data.data());
- // get origin image result
- std::vector<uint8_t> label_map(result->label_map.data.begin(),
- result->label_map.data.end());
- cv::Mat mask_label(result->label_map.shape[1],
- result->label_map.shape[2],
- CV_8UC1,
- label_map.data());
- cv::Mat mask_score(result->score_map.shape[2],
- result->score_map.shape[3],
- CV_32FC1,
- result->score_map.data.data());
- int idx = 1;
- int len_postprocess = inputs_.im_size_before_resize_.size();
- for (std::vector<std::string>::reverse_iterator iter =
- inputs_.reshape_order_.rbegin();
- iter != inputs_.reshape_order_.rend();
- ++iter) {
- if (*iter == "padding") {
- auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
- inputs_.im_size_before_resize_.pop_back();
- auto padding_w = before_shape[0];
- auto padding_h = before_shape[1];
- mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
- mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
- } else if (*iter == "resize") {
- auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
- inputs_.im_size_before_resize_.pop_back();
- auto resize_w = before_shape[0];
- auto resize_h = before_shape[1];
- cv::resize(mask_label,
- mask_label,
- cv::Size(resize_h, resize_w),
- 0,
- 0,
- cv::INTER_NEAREST);
- cv::resize(mask_score,
- mask_score,
- cv::Size(resize_h, resize_w),
- 0,
- 0,
- cv::INTER_LINEAR);
- }
- ++idx;
- }
- result->label_map.data.assign(mask_label.begin<uint8_t>(),
- mask_label.end<uint8_t>());
- result->label_map.shape = {mask_label.rows, mask_label.cols};
- result->score_map.data.assign(mask_score.begin<float>(),
- mask_score.end<float>());
- result->score_map.shape = {mask_score.rows, mask_score.cols};
- return true;
- }
- bool Model::predict(const std::vector<cv::Mat>& im_batch,
- std::vector<SegResult>* results,
- int thread_num) {
- for (auto& inputs : inputs_batch_) {
- inputs.clear();
- }
- if (type == "classifier") {
- std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
- "to function predict()!" << std::endl;
- return false;
- } else if (type == "detector") {
- std::cerr << "Loading model is a 'detector', DetResult should be passed to "
- "function predict()!" << std::endl;
- return false;
- }
- // preprocess
- inputs_batch_.assign(im_batch.size(), ImageBlob());
- if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
- std::cerr << "Preprocess failed!" << std::endl;
- return false;
- }
- int batch_size = im_batch.size();
- (*results).clear();
- (*results).resize(batch_size);
- int h = inputs_batch_[0].new_im_size_[0];
- int w = inputs_batch_[0].new_im_size_[1];
- auto im_tensor = predictor_->GetInputTensor("image");
- im_tensor->Reshape({batch_size, 3, h, w});
- std::vector<float> inputs_data(batch_size * 3 * h * w);
- for (int i = 0; i < batch_size; ++i) {
- std::copy(inputs_batch_[i].im_data_.begin(),
- inputs_batch_[i].im_data_.end(),
- inputs_data.begin() + i * 3 * h * w);
- }
- im_tensor->copy_from_cpu(inputs_data.data());
- // im_tensor->copy_from_cpu(inputs_.im_data_.data());
- // predict
- predictor_->ZeroCopyRun();
- // get labelmap
- auto output_names = predictor_->GetOutputNames();
- auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
- std::vector<int> output_label_shape = output_label_tensor->shape();
- int size = 1;
- for (const auto& i : output_label_shape) {
- size *= i;
- }
- std::vector<int64_t> output_labels(size, 0);
- output_label_tensor->copy_to_cpu(output_labels.data());
- auto output_labels_iter = output_labels.begin();
- int single_batch_size = size / batch_size;
- for (int i = 0; i < batch_size; ++i) {
- (*results)[i].label_map.data.resize(single_batch_size);
- (*results)[i].label_map.shape.push_back(1);
- for (int j = 1; j < output_label_shape.size(); ++j) {
- (*results)[i].label_map.shape.push_back(output_label_shape[j]);
- }
- std::copy(output_labels_iter + i * single_batch_size,
- output_labels_iter + (i + 1) * single_batch_size,
- (*results)[i].label_map.data.data());
- }
- // get scoremap
- auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
- std::vector<int> output_score_shape = output_score_tensor->shape();
- size = 1;
- for (const auto& i : output_score_shape) {
- size *= i;
- }
- std::vector<float> output_scores(size, 0);
- output_score_tensor->copy_to_cpu(output_scores.data());
- auto output_scores_iter = output_scores.begin();
- int single_batch_score_size = size / batch_size;
- for (int i = 0; i < batch_size; ++i) {
- (*results)[i].score_map.data.resize(single_batch_score_size);
- (*results)[i].score_map.shape.push_back(1);
- for (int j = 1; j < output_score_shape.size(); ++j) {
- (*results)[i].score_map.shape.push_back(output_score_shape[j]);
- }
- std::copy(output_scores_iter + i * single_batch_score_size,
- output_scores_iter + (i + 1) * single_batch_score_size,
- (*results)[i].score_map.data.data());
- }
- // get origin image result
- for (int i = 0; i < batch_size; ++i) {
- std::vector<uint8_t> label_map((*results)[i].label_map.data.begin(),
- (*results)[i].label_map.data.end());
- cv::Mat mask_label((*results)[i].label_map.shape[1],
- (*results)[i].label_map.shape[2],
- CV_8UC1,
- label_map.data());
- cv::Mat mask_score((*results)[i].score_map.shape[2],
- (*results)[i].score_map.shape[3],
- CV_32FC1,
- (*results)[i].score_map.data.data());
- int idx = 1;
- int len_postprocess = inputs_batch_[i].im_size_before_resize_.size();
- for (std::vector<std::string>::reverse_iterator iter =
- inputs_batch_[i].reshape_order_.rbegin();
- iter != inputs_batch_[i].reshape_order_.rend();
- ++iter) {
- if (*iter == "padding") {
- auto before_shape =
- inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
- inputs_batch_[i].im_size_before_resize_.pop_back();
- auto padding_w = before_shape[0];
- auto padding_h = before_shape[1];
- mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
- mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
- } else if (*iter == "resize") {
- auto before_shape =
- inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
- inputs_batch_[i].im_size_before_resize_.pop_back();
- auto resize_w = before_shape[0];
- auto resize_h = before_shape[1];
- cv::resize(mask_label,
- mask_label,
- cv::Size(resize_h, resize_w),
- 0,
- 0,
- cv::INTER_NEAREST);
- cv::resize(mask_score,
- mask_score,
- cv::Size(resize_h, resize_w),
- 0,
- 0,
- cv::INTER_LINEAR);
- }
- ++idx;
- }
- (*results)[i].label_map.data.assign(mask_label.begin<uint8_t>(),
- mask_label.end<uint8_t>());
- (*results)[i].label_map.shape = {mask_label.rows, mask_label.cols};
- (*results)[i].score_map.data.assign(mask_score.begin<float>(),
- mask_score.end<float>());
- (*results)[i].score_map.shape = {mask_score.rows, mask_score.cols};
- }
- return true;
- }
- } // namespace PaddleX
|