mask_rcnn_qat.py 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压小度熊分拣数据集
  4. dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
  5. pdx.utils.download_and_decompress(dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
  8. train_transforms = T.Compose([
  9. T.RandomResizeByShort(
  10. short_sizes=[640, 672, 704, 736, 768, 800],
  11. max_size=1333,
  12. interp='CUBIC'), T.RandomHorizontalFlip(), T.Normalize(
  13. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  14. ])
  15. eval_transforms = T.Compose([
  16. T.ResizeByShort(
  17. short_size=800, max_size=1333, interp='CUBIC'), T.Normalize(
  18. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  19. ])
  20. # 定义训练和验证所用的数据集
  21. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/paddlex/cv/datasets/coco.py#L26
  22. train_dataset = pdx.datasets.CocoDetection(
  23. data_dir='xiaoduxiong_ins_det/JPEGImages',
  24. ann_file='xiaoduxiong_ins_det/train.json',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.CocoDetection(
  28. data_dir='xiaoduxiong_ins_det/JPEGImages',
  29. ann_file='xiaoduxiong_ins_det/val.json',
  30. transforms=eval_transforms)
  31. # 加载模型
  32. model = pdx.load_model('output/mask_rcnn_r50_fpn/best_model')
  33. # 在线量化
  34. model.quant_aware_train(
  35. num_epochs=6,
  36. train_dataset=train_dataset,
  37. train_batch_size=1,
  38. eval_dataset=eval_dataset,
  39. learning_rate=0.000125,
  40. save_dir='output/mask_rcnn_r50_fpn/quant',
  41. use_vdl=True)