pipeline.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional
  15. import pickle
  16. from pathlib import Path
  17. import numpy as np
  18. from ...utils.pp_option import PaddlePredictorOption
  19. from ...common.reader import ReadImage
  20. from ...common.batch_sampler import ImageBatchSampler
  21. from ..components import CropByBoxes, FaissIndexer, FaissBuilder
  22. from ..base import BasePipeline
  23. from .result import ShiTuResult
  24. class ShiTuV2Pipeline(BasePipeline):
  25. """ShiTuV2 Pipeline"""
  26. entities = "PP-ShiTuV2"
  27. def __init__(
  28. self,
  29. config: Dict,
  30. device: str = None,
  31. pp_option: PaddlePredictorOption = None,
  32. use_hpip: bool = False,
  33. hpi_params: Optional[Dict[str, Any]] = None,
  34. ):
  35. super().__init__(
  36. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
  37. )
  38. self._topk, self._rec_threshold, self._hamming_radius, self._det_threshold = (
  39. config.get("topk", 5),
  40. config.get("rec_threshold", 0.5),
  41. config.get("hamming_radius", None),
  42. config.get("det_threshold", 0.5),
  43. )
  44. index = config.get("index", None)
  45. self.img_reader = ReadImage(format="BGR")
  46. self.det_model = self.create_model(config["SubModules"]["Detection"])
  47. self.rec_model = self.create_model(config["SubModules"]["Recognition"])
  48. self.crop_by_boxes = CropByBoxes()
  49. self.indexer = self._build_indexer(index=index) if index else None
  50. self.batch_sampler = ImageBatchSampler(
  51. batch_size=self.det_model.batch_sampler.batch_size
  52. )
  53. def predict(self, input, index=None, **kwargs):
  54. indexer = FaissIndexer(index) if index is not None else self.indexer
  55. assert indexer
  56. topk = kwargs.get("topk", self._topk)
  57. rec_threshold = kwargs.get("rec_threshold", self._rec_threshold)
  58. hamming_radius = kwargs.get("hamming_radius", self._hamming_radius)
  59. det_threshold = kwargs.get("det_threshold", self._det_threshold)
  60. for img_id, batch_data in enumerate(self.batch_sampler(input)):
  61. raw_imgs = self.img_reader(batch_data)
  62. all_det_res = list(self.det_model(raw_imgs, threshold=det_threshold))
  63. for input_data, raw_img, det_res in zip(batch_data, raw_imgs, all_det_res):
  64. rec_res = self.get_rec_result(
  65. raw_img, det_res, indexer, rec_threshold, hamming_radius, topk
  66. )
  67. yield self.get_final_result(input_data, raw_img, det_res, rec_res)
  68. def get_rec_result(
  69. self, raw_img, det_res, indexer, rec_threshold, hamming_radius, topk
  70. ):
  71. if len(det_res["boxes"]) == 0:
  72. w, h = raw_img.shape[:2]
  73. det_res["boxes"].append(
  74. {
  75. "cls_id": 0,
  76. "label": "full_img",
  77. "score": 0,
  78. "coordinate": [0, 0, h, w],
  79. }
  80. )
  81. subs_of_img = list(self.crop_by_boxes(raw_img, det_res["boxes"]))
  82. img_list = [img["img"] for img in subs_of_img]
  83. all_rec_res = list(self.rec_model(img_list))
  84. all_rec_res = indexer(
  85. [rec_res["feature"] for rec_res in all_rec_res],
  86. score_thres=rec_threshold,
  87. hamming_radius=hamming_radius,
  88. topk=topk,
  89. )
  90. output = {"label": [], "score": []}
  91. for res in all_rec_res:
  92. output["label"].append(res["label"])
  93. output["score"].append(res["score"])
  94. return output
  95. def get_final_result(self, input_data, raw_img, det_res, rec_res):
  96. single_img_res = {"input_path": input_data, "input_img": raw_img, "boxes": []}
  97. for i, obj in enumerate(det_res["boxes"]):
  98. rec_scores = rec_res["score"][i]
  99. labels = rec_res["label"][i]
  100. single_img_res["boxes"].append(
  101. {
  102. "labels": labels,
  103. "rec_scores": rec_scores,
  104. "det_score": obj["score"],
  105. "coordinate": obj["coordinate"],
  106. }
  107. )
  108. return ShiTuResult(single_img_res)
  109. def build_index(
  110. self,
  111. gallery_imgs,
  112. gallery_label,
  113. metric_type="IP",
  114. index_type="HNSW32",
  115. **kwargs
  116. ):
  117. return FaissBuilder.build(
  118. gallery_imgs,
  119. gallery_label,
  120. self.rec_model.predict,
  121. metric_type=metric_type,
  122. index_type=index_type,
  123. )
  124. def remove_index(self, remove_ids, index):
  125. return FaissBuilder.remove(remove_ids, index)
  126. def append_index(
  127. self,
  128. gallery_imgs,
  129. gallery_label,
  130. index,
  131. ):
  132. return FaissBuilder.append(
  133. gallery_imgs,
  134. gallery_label,
  135. self.rec_model.predict,
  136. index,
  137. )