| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- import random
- import os.path as osp
- import numpy as np
- import cv2
- from PIL import Image, ImageEnhance
- from .imgaug_support import execute_imgaug
- from .ops import *
- from .box_utils import *
- class DetTransform:
- """检测数据处理基类
- """
- def __init__(self):
- pass
- class Compose(DetTransform):
- """根据数据预处理/增强列表对输入数据进行操作。
- 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
- Args:
- transforms (list): 数据预处理/增强列表。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- def __init__(self, transforms):
- if not isinstance(transforms, list):
- raise TypeError('The transforms must be a list!')
- if len(transforms) < 1:
- raise ValueError('The length of transforms ' + \
- 'must be equal or larger than 1!')
- self.transforms = transforms
- self.use_mixup = False
- for t in self.transforms:
- if type(t).__name__ == 'MixupImage':
- self.use_mixup = True
- # 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
- for op in self.transforms:
- if not isinstance(op, DetTransform):
- import imgaug.augmenters as iaa
- if not isinstance(op, iaa.Augmenter):
- raise Exception(
- "Elements in transforms should be defined in 'paddlex.det.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
- )
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (str/np.ndarray): 图像路径/图像np.ndarray数据。
- im_info (dict): 存储与图像相关的信息,dict中的字段如下:
- - im_id (np.ndarray): 图像序列号,形状为(1,)。
- - image_shape (np.ndarray): 图像原始大小,形状为(2,),
- image_shape[0]为高,image_shape[1]为宽。
- - mixup (list): list为[im, im_info, label_info],分别对应
- 与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
- 注意,当前epoch若无需进行mixup,则无该字段。
- label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
- - gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
- 长度为n,其中n代表真实标注框的个数。
- - is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Returns:
- tuple: 根据网络所需字段所组成的tuple;
- 字段由transforms中的最后一个数据预处理操作决定。
- """
- def decode_image(im_file, im_info, label_info):
- if im_info is None:
- im_info = dict()
- if isinstance(im_file, np.ndarray):
- if len(im_file.shape) != 3:
- raise Exception(
- "im should be 3-dimensions, but now is {}-dimensions".
- format(len(im_file.shape)))
- im = im_file
- else:
- try:
- im = cv2.imread(im_file).astype('float32')
- except:
- raise TypeError('Can\'t read The image file {}!'.format(
- im_file))
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
- # make default im_info with [h, w, 1]
- im_info['im_resize_info'] = np.array(
- [im.shape[0], im.shape[1], 1.], dtype=np.float32)
- im_info['image_shape'] = np.array([im.shape[0],
- im.shape[1]]).astype('int32')
- if not self.use_mixup:
- if 'mixup' in im_info:
- del im_info['mixup']
- # decode mixup image
- if 'mixup' in im_info:
- im_info['mixup'] = \
- decode_image(im_info['mixup'][0],
- im_info['mixup'][1],
- im_info['mixup'][2])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- outputs = decode_image(im, im_info, label_info)
- im = outputs[0]
- im_info = outputs[1]
- if len(outputs) == 3:
- label_info = outputs[2]
- for op in self.transforms:
- if im is None:
- return None
- if isinstance(op, DetTransform):
- outputs = op(im, im_info, label_info)
- im = outputs[0]
- else:
- im = execute_imgaug(op, im)
- if label_info is not None:
- outputs = (im, im_info, label_info)
- else:
- outputs = (im, im_info)
- return outputs
- def add_augmenters(self, augmenters):
- if not isinstance(augmenters, list):
- raise Exception(
- "augmenters should be list type in func add_augmenters()")
- assert mode == 'train', "There should be exists augmenters while on train mode"
- self.transforms = augmenters + self.transforms.transforms
- class ResizeByShort(DetTransform):
- """根据图像的短边调整图像大小(resize)。
- 1. 获取图像的长边和短边长度。
- 2. 根据短边与short_size的比例,计算长边的目标长度,
- 此时高、宽的resize比例为short_size/原图短边长度。
- 3. 如果max_size>0,调整resize比例:
- 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
- 4. 根据调整大小的比例对图像进行resize。
- Args:
- target_size (int): 短边目标长度。默认为800。
- max_size (int): 长边目标长度的最大限制。默认为1333。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, short_size=800, max_size=1333):
- self.max_size = int(max_size)
- if not isinstance(short_size, int):
- raise TypeError(
- "Type of short_size is invalid. Must be Integer, now is {}".
- format(type(short_size)))
- self.short_size = short_size
- if not (isinstance(self.max_size, int)):
- raise TypeError("max_size: input type is invalid.")
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
- 三者组成的np.ndarray,形状为(3,)。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("ResizeByShort: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('ResizeByShort: image is not 3-dimensional.')
- im_short_size = min(im.shape[0], im.shape[1])
- im_long_size = max(im.shape[0], im.shape[1])
- scale = float(self.short_size) / im_short_size
- if self.max_size > 0 and np.round(scale *
- im_long_size) > self.max_size:
- scale = float(self.max_size) / float(im_long_size)
- resized_width = int(round(im.shape[1] * scale))
- resized_height = int(round(im.shape[0] * scale))
- im_resize_info = [resized_height, resized_width, scale]
- im = cv2.resize(
- im, (resized_width, resized_height),
- interpolation=cv2.INTER_LINEAR)
- im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Padding(DetTransform):
- """1.将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
- `coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
- 进行padding,最终输出图像为[320, 640]。
- 2.或者,将图像的长和宽padding到target_size指定的shape,如输入的图像为[300,640],
- a. `target_size` = 960,在图像最右和最下使用0值进行padding,最终输出
- 图像为[960, 960]。
- b. `target_size` = [640, 960],在图像最右和最下使用0值进行padding,最终
- 输出图像为[640, 960]。
- 1. 如果coarsest_stride为1,target_size为None则直接返回。
- 2. 获取图像的高H、宽W。
- 3. 计算填充后图像的高H_new、宽W_new。
- 4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
- 并将原图的np.ndarray粘贴于左上角。
- Args:
- coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
- target_size (int|list|tuple): 填充后的图像长、宽,默认为None,coarset_stride优先级更高。
- Raises:
- TypeError: 形参`target_size`数据类型不满足需求。
- ValueError: 形参`target_size`为(list|tuple)时,长度不满足需求。
- """
- def __init__(self, coarsest_stride=1, target_size=None):
- self.coarsest_stride = coarsest_stride
- if target_size is not None:
- if not isinstance(target_size, int):
- if not isinstance(target_size, tuple) and not isinstance(
- target_size, list):
- raise TypeError(
- "Padding: Type of target_size must in (int|list|tuple)."
- )
- elif len(target_size) != 2:
- raise ValueError(
- "Padding: Length of target_size must equal 2.")
- self.target_size = target_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- ValueError: coarsest_stride,target_size需有且只有一个被指定。
- ValueError: target_size小于原图的大小。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Padding: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Padding: image is not 3-dimensional.')
- im_h, im_w, im_c = im.shape[:]
- if isinstance(self.target_size, int):
- padding_im_h = self.target_size
- padding_im_w = self.target_size
- elif isinstance(self.target_size, list) or isinstance(self.target_size,
- tuple):
- padding_im_w = self.target_size[0]
- padding_im_h = self.target_size[1]
- elif self.coarsest_stride > 0:
- padding_im_h = int(
- np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
- padding_im_w = int(
- np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
- else:
- raise ValueError(
- "coarsest_stridei(>1) or target_size(list|int) need setting in Padding transform"
- )
- pad_height = padding_im_h - im_h
- pad_width = padding_im_w - im_w
- if pad_height < 0 or pad_width < 0:
- raise ValueError(
- 'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
- .format(im_w, im_h, padding_im_w, padding_im_h))
- padding_im = np.zeros(
- (padding_im_h, padding_im_w, im_c), dtype=np.float32)
- padding_im[:im_h, :im_w, :] = im
- if label_info is None:
- return (padding_im, im_info)
- else:
- return (padding_im, im_info, label_info)
- class Resize(DetTransform):
- """调整图像大小(resize)。
- - 当目标大小(target_size)类型为int时,根据插值方式,
- 将图像resize为[target_size, target_size]。
- - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
- 将图像resize为target_size。
- 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
- Args:
- target_size (int/list/tuple): 短边目标长度。默认为608。
- interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
- ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
- 'AREA', 'LANCZOS4', 'RANDOM']中。
- """
- # The interpolation mode
- interp_dict = {
- 'NEAREST': cv2.INTER_NEAREST,
- 'LINEAR': cv2.INTER_LINEAR,
- 'CUBIC': cv2.INTER_CUBIC,
- 'AREA': cv2.INTER_AREA,
- 'LANCZOS4': cv2.INTER_LANCZOS4
- }
- def __init__(self, target_size=608, interp='LINEAR'):
- self.interp = interp
- if not (interp == "RANDOM" or interp in self.interp_dict):
- raise ValueError("interp should be one of {}".format(
- self.interp_dict.keys()))
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- if len(target_size) != 2:
- raise TypeError(
- 'when target is list or tuple, it should include 2 elements, but it is {}'
- .format(target_size))
- elif not isinstance(target_size, int):
- raise TypeError(
- "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
- .format(type(target_size)))
- self.target_size = target_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Resize: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Resize: image is not 3-dimensional.')
- if self.interp == "RANDOM":
- interp = random.choice(list(self.interp_dict.keys()))
- else:
- interp = self.interp
- im = resize(im, self.target_size, self.interp_dict[interp])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomHorizontalFlip(DetTransform):
- """随机翻转图像、标注框、分割信息,模型训练时的数据增强操作。
- 1. 随机采样一个0-1之间的小数,当小数小于水平翻转概率时,
- 执行2-4步操作,否则直接返回。
- 2. 水平翻转图像。
- 3. 计算翻转后的真实标注框的坐标,更新label_info中的gt_bbox信息。
- 4. 计算翻转后的真实分割区域的坐标,更新label_info中的gt_poly信息。
- Args:
- prob (float): 随机水平翻转的概率。默认为0.5。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, prob=0.5):
- self.prob = prob
- if not isinstance(self.prob, float):
- raise TypeError("RandomHorizontalFlip: input type is invalid.")
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - gt_bbox (np.ndarray): 水平翻转后的标注框坐标[x1, y1, x2, y2],形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_poly (list): 水平翻转后的多边形分割区域的x、y坐标,长度为n,
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if not isinstance(im, np.ndarray):
- raise TypeError(
- "RandomHorizontalFlip: image is not a numpy array.")
- if len(im.shape) != 3:
- raise ValueError(
- "RandomHorizontalFlip: image is not 3-dimensional.")
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomHorizontalFlip! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'gt_bbox' not in label_info:
- raise TypeError('Cannot do RandomHorizontalFlip! ' + \
- 'Becasuse gt_bbox is not in label_info!')
- image_shape = im_info['image_shape']
- gt_bbox = label_info['gt_bbox']
- height = image_shape[0]
- width = image_shape[1]
- if np.random.uniform(0, 1) < self.prob:
- im = horizontal_flip(im)
- if gt_bbox.shape[0] == 0:
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- label_info['gt_bbox'] = box_horizontal_flip(gt_bbox, width)
- if 'gt_poly' in label_info and \
- len(label_info['gt_poly']) != 0:
- label_info['gt_poly'] = segms_horizontal_flip(
- label_info['gt_poly'], height, width)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Normalize(DetTransform):
- """对图像进行标准化。
- 1. 归一化图像到到区间[0.0, 1.0]。
- 2. 对图像进行减均值除以标准差操作。
- Args:
- mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
- std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
- self.mean = mean
- self.std = std
- if not (isinstance(self.mean, list) and isinstance(self.std, list)):
- raise TypeError("NormalizeImage: input type is invalid.")
- from functools import reduce
- if reduce(lambda x, y: x * y, self.std) == 0:
- raise TypeError('NormalizeImage: std is invalid!')
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
- im = normalize(im, mean, std)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomDistort(DetTransform):
- """以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作
- 1. 对变换的操作顺序进行随机化操作。
- 2. 按照1中的顺序以一定的概率在范围[-range, range]对图像进行随机像素内容变换。
- Args:
- brightness_range (float): 明亮度因子的范围。默认为0.5。
- brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
- contrast_range (float): 对比度因子的范围。默认为0.5。
- contrast_prob (float): 随机调整对比度的概率。默认为0.5。
- saturation_range (float): 饱和度因子的范围。默认为0.5。
- saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
- hue_range (int): 色调因子的范围。默认为18。
- hue_prob (float): 随机调整色调的概率。默认为0.5。
- """
- def __init__(self,
- brightness_range=0.5,
- brightness_prob=0.5,
- contrast_range=0.5,
- contrast_prob=0.5,
- saturation_range=0.5,
- saturation_prob=0.5,
- hue_range=18,
- hue_prob=0.5):
- self.brightness_range = brightness_range
- self.brightness_prob = brightness_prob
- self.contrast_range = contrast_range
- self.contrast_prob = contrast_prob
- self.saturation_range = saturation_range
- self.saturation_prob = saturation_prob
- self.hue_range = hue_range
- self.hue_prob = hue_prob
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- brightness_lower = 1 - self.brightness_range
- brightness_upper = 1 + self.brightness_range
- contrast_lower = 1 - self.contrast_range
- contrast_upper = 1 + self.contrast_range
- saturation_lower = 1 - self.saturation_range
- saturation_upper = 1 + self.saturation_range
- hue_lower = -self.hue_range
- hue_upper = self.hue_range
- ops = [brightness, contrast, saturation, hue]
- random.shuffle(ops)
- params_dict = {
- 'brightness': {
- 'brightness_lower': brightness_lower,
- 'brightness_upper': brightness_upper
- },
- 'contrast': {
- 'contrast_lower': contrast_lower,
- 'contrast_upper': contrast_upper
- },
- 'saturation': {
- 'saturation_lower': saturation_lower,
- 'saturation_upper': saturation_upper
- },
- 'hue': {
- 'hue_lower': hue_lower,
- 'hue_upper': hue_upper
- }
- }
- prob_dict = {
- 'brightness': self.brightness_prob,
- 'contrast': self.contrast_prob,
- 'saturation': self.saturation_prob,
- 'hue': self.hue_prob
- }
- for id in range(4):
- params = params_dict[ops[id].__name__]
- prob = prob_dict[ops[id].__name__]
- params['im'] = im
- if np.random.uniform(0, 1) < prob:
- im = ops[id](**params)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class MixupImage(DetTransform):
- """对图像进行mixup操作,模型训练时的数据增强操作,目前仅YOLOv3模型支持该transform。
- 当label_info中不存在mixup字段时,直接返回,否则进行下述操作:
- 1. 从随机beta分布中抽取出随机因子factor。
- 2.
- - 当factor>=1.0时,去除label_info中的mixup字段,直接返回。
- - 当factor<=0.0时,直接返回label_info中的mixup字段,并在label_info中去除该字段。
- - 其余情况,执行下述操作:
- (1)原图像乘以factor,mixup图像乘以(1-factor),叠加2个结果。
- (2)拼接原图像标注框和mixup图像标注框。
- (3)拼接原图像标注框类别和mixup图像标注框类别。
- (4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
- 3. 更新im_info中的image_shape信息。
- Args:
- alpha (float): 随机beta分布的下限。默认为1.5。
- beta (float): 随机beta分布的上限。默认为1.5。
- mixup_epoch (int): 在前mixup_epoch轮使用mixup增强操作;当该参数为-1时,该策略不会生效。
- 默认为-1。
- Raises:
- ValueError: 数据长度不匹配。
- """
- def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
- self.alpha = alpha
- self.beta = beta
- if self.alpha <= 0.0:
- raise ValueError("alpha shold be positive in MixupImage")
- if self.beta <= 0.0:
- raise ValueError("beta shold be positive in MixupImage")
- self.mixup_epoch = mixup_epoch
- def _mixup_img(self, img1, img2, factor):
- h = max(img1.shape[0], img2.shape[0])
- w = max(img1.shape[1], img2.shape[1])
- img = np.zeros((h, w, img1.shape[2]), 'float32')
- img[:img1.shape[0], :img1.shape[1], :] = \
- img1.astype('float32') * factor
- img[:img2.shape[0], :img2.shape[1], :] += \
- img2.astype('float32') * (1.0 - factor)
- return img.astype('float32')
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- im_info删除的字段:
- - mixup (list): 与当前字段进行mixup的图像相关信息。
- label_info更新字段为:
- - gt_bbox (np.ndarray): mixup后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): mixup后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): mixup后每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None:
- raise TypeError('Cannot do MixupImage! ' +
- 'Becasuse the im_info can not be None!')
- if 'mixup' not in im_info:
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- factor = np.random.beta(self.alpha, self.beta)
- factor = max(0.0, min(1.0, factor))
- if im_info['epoch'] > self.mixup_epoch \
- or factor >= 1.0:
- im_info.pop('mixup')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- if factor <= 0.0:
- return im_info.pop('mixup')
- im = self._mixup_img(im, im_info['mixup'][0], factor)
- if label_info is None:
- raise TypeError('Cannot do MixupImage! ' +
- 'Becasuse the label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info or \
- 'gt_score' not in label_info:
- raise TypeError('Cannot do MixupImage! ' + \
- 'Becasuse gt_bbox/gt_class/gt_score is not in label_info!')
- gt_bbox1 = label_info['gt_bbox']
- gt_bbox2 = im_info['mixup'][2]['gt_bbox']
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
- gt_class1 = label_info['gt_class']
- gt_class2 = im_info['mixup'][2]['gt_class']
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
- gt_score1 = label_info['gt_score']
- gt_score2 = im_info['mixup'][2]['gt_score']
- gt_score = np.concatenate(
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
- if 'gt_poly' in label_info:
- gt_poly1 = label_info['gt_poly']
- gt_poly2 = im_info['mixup'][2]['gt_poly']
- label_info['gt_poly'] = gt_poly1 + gt_poly2
- is_crowd1 = label_info['is_crowd']
- is_crowd2 = im_info['mixup'][2]['is_crowd']
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
- label_info['gt_bbox'] = gt_bbox
- label_info['gt_score'] = gt_score
- label_info['gt_class'] = gt_class
- label_info['is_crowd'] = is_crowd
- im_info['image_shape'] = np.array([im.shape[0],
- im.shape[1]]).astype('int32')
- im_info.pop('mixup')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomExpand(DetTransform):
- """随机扩张图像,模型训练时的数据增强操作。
- 1. 随机选取扩张比例(扩张比例大于1时才进行扩张)。
- 2. 计算扩张后图像大小。
- 3. 初始化像素值为输入填充值的图像,并将原图像随机粘贴于该图像上。
- 4. 根据原图像粘贴位置换算出扩张后真实标注框的位置坐标。
- 5. 根据原图像粘贴位置换算出扩张后真实分割区域的位置坐标。
- Args:
- ratio (float): 图像扩张的最大比例。默认为4.0。
- prob (float): 随机扩张的概率。默认为0.5。
- fill_value (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
- """
- def __init__(self,
- ratio=4.,
- prob=0.5,
- fill_value=[123.675, 116.28, 103.53]):
- super(RandomExpand, self).__init__()
- assert ratio > 1.01, "expand ratio must be larger than 1.01"
- self.ratio = ratio
- self.prob = prob
- assert isinstance(fill_value, Sequence), \
- "fill value must be sequence"
- if not isinstance(fill_value, tuple):
- fill_value = tuple(fill_value)
- self.fill_value = fill_value
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- label_info更新字段为:
- - gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 随机扩张后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomExpand! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info:
- raise TypeError('Cannot do RandomExpand! ' + \
- 'Becasuse gt_bbox/gt_class is not in label_info!')
- if np.random.uniform(0., 1.) < self.prob:
- return (im, im_info, label_info)
- image_shape = im_info['image_shape']
- height = int(image_shape[0])
- width = int(image_shape[1])
- expand_ratio = np.random.uniform(1., self.ratio)
- h = int(height * expand_ratio)
- w = int(width * expand_ratio)
- if not h > height or not w > width:
- return (im, im_info, label_info)
- y = np.random.randint(0, h - height)
- x = np.random.randint(0, w - width)
- canvas = np.ones((h, w, 3), dtype=np.float32)
- canvas *= np.array(self.fill_value, dtype=np.float32)
- canvas[y:y + height, x:x + width, :] = im
- im_info['image_shape'] = np.array([h, w]).astype('int32')
- if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
- label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
- if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
- label_info['gt_poly'] = expand_segms(label_info['gt_poly'], x, y,
- height, width, expand_ratio)
- return (canvas, im_info, label_info)
- class RandomCrop(DetTransform):
- """随机裁剪图像。
- 1. 若allow_no_crop为True,则在thresholds加入’no_crop’。
- 2. 随机打乱thresholds。
- 3. 遍历thresholds中各元素:
- (1) 如果当前thresh为’no_crop’,则返回原始图像和标注信息。
- (2) 随机取出aspect_ratio和scaling中的值并由此计算出候选裁剪区域的高、宽、起始点。
- (3) 计算真实标注框与候选裁剪区域IoU,若全部真实标注框的IoU都小于thresh,则继续第3步。
- (4) 如果cover_all_box为True且存在真实标注框的IoU小于thresh,则继续第3步。
- (5) 筛选出位于候选裁剪区域内的真实标注框,若有效框的个数为0,则继续第3步,否则进行第4步。
- 4. 换算有效真值标注框相对候选裁剪区域的位置坐标。
- 5. 换算有效分割区域相对候选裁剪区域的位置坐标。
- Args:
- aspect_ratio (list): 裁剪后短边缩放比例的取值范围,以[min, max]形式表示。默认值为[.5, 2.]。
- thresholds (list): 判断裁剪候选区域是否有效所需的IoU阈值取值列表。默认值为[.0, .1, .3, .5, .7, .9]。
- scaling (list): 裁剪面积相对原面积的取值范围,以[min, max]形式表示。默认值为[.3, 1.]。
- num_attempts (int): 在放弃寻找有效裁剪区域前尝试的次数。默认值为50。
- allow_no_crop (bool): 是否允许未进行裁剪。默认值为True。
- cover_all_box (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
- """
- def __init__(self,
- aspect_ratio=[.5, 2.],
- thresholds=[.0, .1, .3, .5, .7, .9],
- scaling=[.3, 1.],
- num_attempts=50,
- allow_no_crop=True,
- cover_all_box=False):
- self.aspect_ratio = aspect_ratio
- self.thresholds = thresholds
- self.scaling = scaling
- self.num_attempts = num_attempts
- self.allow_no_crop = allow_no_crop
- self.cover_all_box = cover_all_box
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
- label_info更新字段为:
- - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomCrop! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info:
- raise TypeError('Cannot do RandomCrop! ' + \
- 'Becasuse gt_bbox/gt_class is not in label_info!')
- if len(label_info['gt_bbox']) == 0:
- return (im, im_info, label_info)
- image_shape = im_info['image_shape']
- w = image_shape[1]
- h = image_shape[0]
- gt_bbox = label_info['gt_bbox']
- thresholds = list(self.thresholds)
- if self.allow_no_crop:
- thresholds.append('no_crop')
- np.random.shuffle(thresholds)
- for thresh in thresholds:
- if thresh == 'no_crop':
- return (im, im_info, label_info)
- found = False
- for i in range(self.num_attempts):
- scale = np.random.uniform(*self.scaling)
- min_ar, max_ar = self.aspect_ratio
- aspect_ratio = np.random.uniform(
- max(min_ar, scale**2), min(max_ar, scale**-2))
- crop_h = int(h * scale / np.sqrt(aspect_ratio))
- crop_w = int(w * scale * np.sqrt(aspect_ratio))
- crop_y = np.random.randint(0, h - crop_h)
- crop_x = np.random.randint(0, w - crop_w)
- crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
- iou = iou_matrix(
- gt_bbox, np.array(
- [crop_box], dtype=np.float32))
- if iou.max() < thresh:
- continue
- if self.cover_all_box and iou.min() < thresh:
- continue
- cropped_box, valid_ids = crop_box_with_center_constraint(
- gt_bbox, np.array(
- crop_box, dtype=np.float32))
- if valid_ids.size > 0:
- found = True
- break
- if found:
- if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
- crop_polys = crop_segms(
- label_info['gt_poly'],
- valid_ids,
- np.array(
- crop_box, dtype=np.int64),
- h,
- w)
- if [] in crop_polys:
- delete_id = list()
- valid_polys = list()
- for id, crop_poly in enumerate(crop_polys):
- if crop_poly == []:
- delete_id.append(id)
- else:
- valid_polys.append(crop_poly)
- valid_ids = np.delete(valid_ids, delete_id)
- if len(valid_polys) == 0:
- return (im, im_info, label_info)
- label_info['gt_poly'] = valid_polys
- else:
- label_info['gt_poly'] = crop_polys
- im = crop_image(im, crop_box)
- label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
- label_info['gt_class'] = np.take(
- label_info['gt_class'], valid_ids, axis=0)
- im_info['image_shape'] = np.array(
- [crop_box[3] - crop_box[1],
- crop_box[2] - crop_box[0]]).astype('int32')
- if 'gt_score' in label_info:
- label_info['gt_score'] = np.take(
- label_info['gt_score'], valid_ids, axis=0)
- if 'is_crowd' in label_info:
- label_info['is_crowd'] = np.take(
- label_info['is_crowd'], valid_ids, axis=0)
- return (im, im_info, label_info)
- return (im, im_info, label_info)
- class ArrangeFasterRCNN(DetTransform):
- """获取FasterRCNN模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd),分别对应
- 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象;
- 当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape, gt_bbox, gt_class, is_difficult),
- 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像id、图像大小信息、真实标注框、真实标注框对应的类别、
- 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),分别对应图像np.ndarray数据、
- 图像相当对于原图的resize信息、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_resize_info = im_info['im_resize_info']
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_crowd = label_info['is_crowd']
- outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd)
- elif self.mode == 'eval':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_id = im_info['im_id']
- im_shape = np.array(
- (im_info['image_shape'][0], im_info['image_shape'][1], 1),
- dtype=np.float32)
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_difficult = label_info['difficult']
- outputs = (im, im_resize_info, im_id, im_shape, gt_bbox, gt_class,
- is_difficult)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_shape = np.array(
- (im_info['image_shape'][0], im_info['image_shape'][1], 1),
- dtype=np.float32)
- outputs = (im, im_resize_info, im_shape)
- return outputs
- class ArrangeMaskRCNN(DetTransform):
- """获取MaskRCNN模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd, gt_masks),分别对应
- 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象、
- 真实分割区域;当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape),分别对应图像np.ndarray数据、
- 图像相当对于原图的resize信息、图像id、图像大小信息;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),
- 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeTrainMaskRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_resize_info = im_info['im_resize_info']
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_crowd = label_info['is_crowd']
- assert 'gt_poly' in label_info
- segms = label_info['gt_poly']
- if len(segms) != 0:
- assert len(segms) == is_crowd.shape[0]
- gt_masks = []
- valid = True
- for i in range(len(segms)):
- segm = segms[i]
- gt_segm = []
- if is_crowd[i]:
- gt_segm.append([[0, 0]])
- else:
- for poly in segm:
- if len(poly) == 0:
- valid = False
- break
- gt_segm.append(np.array(poly).reshape(-1, 2))
- if (not valid) or len(gt_segm) == 0:
- break
- gt_masks.append(gt_segm)
- outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd,
- gt_masks)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeMaskRCNN! ' +
- 'Becasuse the im_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_shape = np.array(
- (im_info['image_shape'][0], im_info['image_shape'][1], 1),
- dtype=np.float32)
- if self.mode == 'eval':
- im_id = im_info['im_id']
- outputs = (im, im_resize_info, im_id, im_shape)
- else:
- outputs = (im, im_resize_info, im_shape)
- return outputs
- class ArrangeYOLOv3(DetTransform):
- """获取YOLOv3模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
- 图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
- 当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
- 分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
- 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
- 分别对应图像np.ndarray数据、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_shape = im_info['image_shape']
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- if len(label_info['gt_bbox']) != len(label_info['gt_score']):
- raise ValueError("gt num mismatch: bbox and score.")
- gt_bbox = np.zeros((50, 4), dtype=im.dtype)
- gt_class = np.zeros((50, ), dtype=np.int32)
- gt_score = np.zeros((50, ), dtype=im.dtype)
- gt_num = min(50, len(label_info['gt_bbox']))
- if gt_num > 0:
- label_info['gt_class'][:gt_num, 0] = label_info[
- 'gt_class'][:gt_num, 0] - 1
- gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
- gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
- gt_score[:gt_num] = label_info['gt_score'][:gt_num, 0]
- # parse [x1, y1, x2, y2] to [x, y, w, h]
- gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
- gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
- outputs = (im, gt_bbox, gt_class, gt_score, im_shape)
- elif self.mode == 'eval':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_shape = im_info['image_shape']
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_id = im_info['im_id']
- gt_bbox = np.zeros((50, 4), dtype=im.dtype)
- gt_class = np.zeros((50, ), dtype=np.int32)
- difficult = np.zeros((50, ), dtype=np.int32)
- gt_num = min(50, len(label_info['gt_bbox']))
- if gt_num > 0:
- label_info['gt_class'][:gt_num, 0] = label_info[
- 'gt_class'][:gt_num, 0] - 1
- gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
- gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
- difficult[:gt_num] = label_info['difficult'][:gt_num, 0]
- outputs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info can not be None!')
- im_shape = im_info['image_shape']
- outputs = (im, im_shape)
- return outputs
- class ComposedRCNNTransforms(Compose):
- """ RCNN模型(faster-rcnn/mask-rcnn)图像处理流程,具体如下,
- 训练阶段:
- 1. 随机以0.5的概率将图像水平翻转
- 2. 图像归一化
- 3. 图像按比例Resize,scale计算方式如下
- scale = min_max_size[0] / short_size_of_image
- if max_size_of_image * scale > min_max_size[1]:
- scale = min_max_size[1] / max_size_of_image
- 4. 将3步骤的长宽进行padding,使得长宽为32的倍数
- 验证阶段:
- 1. 图像归一化
- 2. 图像按比例Resize,scale计算方式同上训练阶段
- 3. 将2步骤的长宽进行padding,使得长宽为32的倍数
- Args:
- mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
- min_max_size(list): 图像在缩放时,最小边和最大边的约束条件
- mean(list): 图像均值
- std(list): 图像方差
- """
- def __init__(self,
- mode,
- min_max_size=[800, 1333],
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225]):
- if mode == 'train':
- # 训练时的transforms,包含数据增强
- transforms = [
- RandomHorizontalFlip(prob=0.5), Normalize(
- mean=mean, std=std), ResizeByShort(
- short_size=min_max_size[0], max_size=min_max_size[1]),
- Padding(coarsest_stride=32)
- ]
- else:
- # 验证/预测时的transforms
- transforms = [
- Normalize(
- mean=mean, std=std), ResizeByShort(
- short_size=min_max_size[0], max_size=min_max_size[1]),
- Padding(coarsest_stride=32)
- ]
- super(ComposedRCNNTransforms, self).__init__(transforms)
- class ComposedYOLOTransforms(Compose):
- """YOLOv3模型的图像预处理流程,具体如下,
- 训练阶段:
- 1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
- 2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
- 3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
- 4. 随机裁剪图像
- 5. 将4步骤的输出图像Resize成shape参数的大小
- 6. 随机0.5的概率水平翻转图像
- 7. 图像归一化
- 验证/预测阶段:
- 1. 将图像Resize成shape参数大小
- 2. 图像归一化
- Args:
- mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
- shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
- mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略
- mean(list): 图像均值
- std(list): 图像方差
- """
- def __init__(self,
- mode,
- shape=[608, 608],
- mixup_epoch=250,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225]):
- width = shape
- if isinstance(shape, list):
- if shape[0] != shape[1]:
- raise Exception(
- "In YOLOv3 model, width and height should be equal")
- width = shape[0]
- if width % 32 != 0:
- raise Exception(
- "In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
- )
- if mode == 'train':
- # 训练时的transforms,包含数据增强
- transforms = [
- MixupImage(mixup_epoch=mixup_epoch), RandomDistort(),
- RandomExpand(), RandomCrop(), Resize(
- target_size=width,
- interp='RANDOM'), RandomHorizontalFlip(), Normalize(
- mean=mean, std=std)
- ]
- else:
- # 验证/预测时的transforms
- transforms = [
- Resize(
- target_size=width, interp='CUBIC'), Normalize(
- mean=mean, std=std)
- ]
- super(ComposedYOLOTransforms, self).__init__(transforms)
|