det_transforms.py 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. try:
  15. from collections.abc import Sequence
  16. except Exception:
  17. from collections import Sequence
  18. import random
  19. import os.path as osp
  20. import numpy as np
  21. import cv2
  22. from PIL import Image, ImageEnhance
  23. from .imgaug_support import execute_imgaug
  24. from .ops import *
  25. from .box_utils import *
  26. class DetTransform:
  27. """检测数据处理基类
  28. """
  29. def __init__(self):
  30. pass
  31. class Compose(DetTransform):
  32. """根据数据预处理/增强列表对输入数据进行操作。
  33. 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
  34. Args:
  35. transforms (list): 数据预处理/增强列表。
  36. Raises:
  37. TypeError: 形参数据类型不满足需求。
  38. ValueError: 数据长度不匹配。
  39. """
  40. def __init__(self, transforms):
  41. if not isinstance(transforms, list):
  42. raise TypeError('The transforms must be a list!')
  43. if len(transforms) < 1:
  44. raise ValueError('The length of transforms ' + \
  45. 'must be equal or larger than 1!')
  46. self.transforms = transforms
  47. self.use_mixup = False
  48. for t in self.transforms:
  49. if type(t).__name__ == 'MixupImage':
  50. self.use_mixup = True
  51. # 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
  52. for op in self.transforms:
  53. if not isinstance(op, DetTransform):
  54. import imgaug.augmenters as iaa
  55. if not isinstance(op, iaa.Augmenter):
  56. raise Exception(
  57. "Elements in transforms should be defined in 'paddlex.det.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
  58. )
  59. def __call__(self, im, im_info=None, label_info=None):
  60. """
  61. Args:
  62. im (str/np.ndarray): 图像路径/图像np.ndarray数据。
  63. im_info (dict): 存储与图像相关的信息,dict中的字段如下:
  64. - im_id (np.ndarray): 图像序列号,形状为(1,)。
  65. - image_shape (np.ndarray): 图像原始大小,形状为(2,),
  66. image_shape[0]为高,image_shape[1]为宽。
  67. - mixup (list): list为[im, im_info, label_info],分别对应
  68. 与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
  69. 注意,当前epoch若无需进行mixup,则无该字段。
  70. label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
  71. - gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
  72. 其中n代表真实标注框的个数。
  73. - gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
  74. 其中n代表真实标注框的个数。
  75. - gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
  76. 其中n代表真实标注框的个数。
  77. - gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
  78. 长度为n,其中n代表真实标注框的个数。
  79. - is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
  80. 其中n代表真实标注框的个数。
  81. - difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
  82. 其中n代表真实标注框的个数。
  83. Returns:
  84. tuple: 根据网络所需字段所组成的tuple;
  85. 字段由transforms中的最后一个数据预处理操作决定。
  86. """
  87. def decode_image(im_file, im_info, label_info):
  88. if im_info is None:
  89. im_info = dict()
  90. if isinstance(im_file, np.ndarray):
  91. if len(im_file.shape) != 3:
  92. raise Exception(
  93. "im should be 3-dimensions, but now is {}-dimensions".
  94. format(len(im_file.shape)))
  95. im = im_file
  96. else:
  97. try:
  98. im = cv2.imread(im_file).astype('float32')
  99. except:
  100. raise TypeError('Can\'t read The image file {}!'.format(
  101. im_file))
  102. im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
  103. # make default im_info with [h, w, 1]
  104. im_info['im_resize_info'] = np.array(
  105. [im.shape[0], im.shape[1], 1.], dtype=np.float32)
  106. im_info['image_shape'] = np.array([im.shape[0],
  107. im.shape[1]]).astype('int32')
  108. if not self.use_mixup:
  109. if 'mixup' in im_info:
  110. del im_info['mixup']
  111. # decode mixup image
  112. if 'mixup' in im_info:
  113. im_info['mixup'] = \
  114. decode_image(im_info['mixup'][0],
  115. im_info['mixup'][1],
  116. im_info['mixup'][2])
  117. if label_info is None:
  118. return (im, im_info)
  119. else:
  120. return (im, im_info, label_info)
  121. outputs = decode_image(im, im_info, label_info)
  122. im = outputs[0]
  123. im_info = outputs[1]
  124. if len(outputs) == 3:
  125. label_info = outputs[2]
  126. for op in self.transforms:
  127. if im is None:
  128. return None
  129. if isinstance(op, DetTransform):
  130. outputs = op(im, im_info, label_info)
  131. im = outputs[0]
  132. else:
  133. im = execute_imgaug(op, im)
  134. if label_info is not None:
  135. outputs = (im, im_info, label_info)
  136. else:
  137. outputs = (im, im_info)
  138. return outputs
  139. def add_augmenters(self, augmenters):
  140. if not isinstance(augmenters, list):
  141. raise Exception(
  142. "augmenters should be list type in func add_augmenters()")
  143. assert mode == 'train', "There should be exists augmenters while on train mode"
  144. self.transforms = augmenters + self.transforms.transforms
  145. class ResizeByShort(DetTransform):
  146. """根据图像的短边调整图像大小(resize)。
  147. 1. 获取图像的长边和短边长度。
  148. 2. 根据短边与short_size的比例,计算长边的目标长度,
  149. 此时高、宽的resize比例为short_size/原图短边长度。
  150. 3. 如果max_size>0,调整resize比例:
  151. 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
  152. 4. 根据调整大小的比例对图像进行resize。
  153. Args:
  154. target_size (int): 短边目标长度。默认为800。
  155. max_size (int): 长边目标长度的最大限制。默认为1333。
  156. Raises:
  157. TypeError: 形参数据类型不满足需求。
  158. """
  159. def __init__(self, short_size=800, max_size=1333):
  160. self.max_size = int(max_size)
  161. if not isinstance(short_size, int):
  162. raise TypeError(
  163. "Type of short_size is invalid. Must be Integer, now is {}".
  164. format(type(short_size)))
  165. self.short_size = short_size
  166. if not (isinstance(self.max_size, int)):
  167. raise TypeError("max_size: input type is invalid.")
  168. def __call__(self, im, im_info=None, label_info=None):
  169. """
  170. Args:
  171. im (numnp.ndarraypy): 图像np.ndarray数据。
  172. im_info (dict, 可选): 存储与图像相关的信息。
  173. label_info (dict, 可选): 存储与标注框相关的信息。
  174. Returns:
  175. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  176. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  177. 存储与标注框相关信息的字典。
  178. 其中,im_info更新字段为:
  179. - im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
  180. 三者组成的np.ndarray,形状为(3,)。
  181. Raises:
  182. TypeError: 形参数据类型不满足需求。
  183. ValueError: 数据长度不匹配。
  184. """
  185. if im_info is None:
  186. im_info = dict()
  187. if not isinstance(im, np.ndarray):
  188. raise TypeError("ResizeByShort: image type is not numpy.")
  189. if len(im.shape) != 3:
  190. raise ValueError('ResizeByShort: image is not 3-dimensional.')
  191. im_short_size = min(im.shape[0], im.shape[1])
  192. im_long_size = max(im.shape[0], im.shape[1])
  193. scale = float(self.short_size) / im_short_size
  194. if self.max_size > 0 and np.round(scale *
  195. im_long_size) > self.max_size:
  196. scale = float(self.max_size) / float(im_long_size)
  197. resized_width = int(round(im.shape[1] * scale))
  198. resized_height = int(round(im.shape[0] * scale))
  199. im_resize_info = [resized_height, resized_width, scale]
  200. im = cv2.resize(
  201. im, (resized_width, resized_height),
  202. interpolation=cv2.INTER_LINEAR)
  203. im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
  204. if label_info is None:
  205. return (im, im_info)
  206. else:
  207. return (im, im_info, label_info)
  208. class Padding(DetTransform):
  209. """1.将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
  210. `coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
  211. 进行padding,最终输出图像为[320, 640]。
  212. 2.或者,将图像的长和宽padding到target_size指定的shape,如输入的图像为[300,640],
  213. a. `target_size` = 960,在图像最右和最下使用0值进行padding,最终输出
  214. 图像为[960, 960]。
  215. b. `target_size` = [640, 960],在图像最右和最下使用0值进行padding,最终
  216. 输出图像为[640, 960]。
  217. 1. 如果coarsest_stride为1,target_size为None则直接返回。
  218. 2. 获取图像的高H、宽W。
  219. 3. 计算填充后图像的高H_new、宽W_new。
  220. 4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
  221. 并将原图的np.ndarray粘贴于左上角。
  222. Args:
  223. coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
  224. target_size (int|list|tuple): 填充后的图像长、宽,默认为None,coarset_stride优先级更高。
  225. Raises:
  226. TypeError: 形参`target_size`数据类型不满足需求。
  227. ValueError: 形参`target_size`为(list|tuple)时,长度不满足需求。
  228. """
  229. def __init__(self, coarsest_stride=1, target_size=None):
  230. self.coarsest_stride = coarsest_stride
  231. if target_size is not None:
  232. if not isinstance(target_size, int):
  233. if not isinstance(target_size, tuple) and not isinstance(
  234. target_size, list):
  235. raise TypeError(
  236. "Padding: Type of target_size must in (int|list|tuple)."
  237. )
  238. elif len(target_size) != 2:
  239. raise ValueError(
  240. "Padding: Length of target_size must equal 2.")
  241. self.target_size = target_size
  242. def __call__(self, im, im_info=None, label_info=None):
  243. """
  244. Args:
  245. im (numnp.ndarraypy): 图像np.ndarray数据。
  246. im_info (dict, 可选): 存储与图像相关的信息。
  247. label_info (dict, 可选): 存储与标注框相关的信息。
  248. Returns:
  249. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  250. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  251. 存储与标注框相关信息的字典。
  252. Raises:
  253. TypeError: 形参数据类型不满足需求。
  254. ValueError: 数据长度不匹配。
  255. ValueError: coarsest_stride,target_size需有且只有一个被指定。
  256. ValueError: target_size小于原图的大小。
  257. """
  258. if im_info is None:
  259. im_info = dict()
  260. if not isinstance(im, np.ndarray):
  261. raise TypeError("Padding: image type is not numpy.")
  262. if len(im.shape) != 3:
  263. raise ValueError('Padding: image is not 3-dimensional.')
  264. im_h, im_w, im_c = im.shape[:]
  265. if isinstance(self.target_size, int):
  266. padding_im_h = self.target_size
  267. padding_im_w = self.target_size
  268. elif isinstance(self.target_size, list) or isinstance(self.target_size,
  269. tuple):
  270. padding_im_w = self.target_size[0]
  271. padding_im_h = self.target_size[1]
  272. elif self.coarsest_stride > 0:
  273. padding_im_h = int(
  274. np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
  275. padding_im_w = int(
  276. np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
  277. else:
  278. raise ValueError(
  279. "coarsest_stridei(>1) or target_size(list|int) need setting in Padding transform"
  280. )
  281. pad_height = padding_im_h - im_h
  282. pad_width = padding_im_w - im_w
  283. if pad_height < 0 or pad_width < 0:
  284. raise ValueError(
  285. 'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
  286. .format(im_w, im_h, padding_im_w, padding_im_h))
  287. padding_im = np.zeros(
  288. (padding_im_h, padding_im_w, im_c), dtype=np.float32)
  289. padding_im[:im_h, :im_w, :] = im
  290. if label_info is None:
  291. return (padding_im, im_info)
  292. else:
  293. return (padding_im, im_info, label_info)
  294. class Resize(DetTransform):
  295. """调整图像大小(resize)。
  296. - 当目标大小(target_size)类型为int时,根据插值方式,
  297. 将图像resize为[target_size, target_size]。
  298. - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
  299. 将图像resize为target_size。
  300. 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
  301. Args:
  302. target_size (int/list/tuple): 短边目标长度。默认为608。
  303. interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
  304. ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
  305. Raises:
  306. TypeError: 形参数据类型不满足需求。
  307. ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
  308. 'AREA', 'LANCZOS4', 'RANDOM']中。
  309. """
  310. # The interpolation mode
  311. interp_dict = {
  312. 'NEAREST': cv2.INTER_NEAREST,
  313. 'LINEAR': cv2.INTER_LINEAR,
  314. 'CUBIC': cv2.INTER_CUBIC,
  315. 'AREA': cv2.INTER_AREA,
  316. 'LANCZOS4': cv2.INTER_LANCZOS4
  317. }
  318. def __init__(self, target_size=608, interp='LINEAR'):
  319. self.interp = interp
  320. if not (interp == "RANDOM" or interp in self.interp_dict):
  321. raise ValueError("interp should be one of {}".format(
  322. self.interp_dict.keys()))
  323. if isinstance(target_size, list) or isinstance(target_size, tuple):
  324. if len(target_size) != 2:
  325. raise TypeError(
  326. 'when target is list or tuple, it should include 2 elements, but it is {}'
  327. .format(target_size))
  328. elif not isinstance(target_size, int):
  329. raise TypeError(
  330. "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
  331. .format(type(target_size)))
  332. self.target_size = target_size
  333. def __call__(self, im, im_info=None, label_info=None):
  334. """
  335. Args:
  336. im (np.ndarray): 图像np.ndarray数据。
  337. im_info (dict, 可选): 存储与图像相关的信息。
  338. label_info (dict, 可选): 存储与标注框相关的信息。
  339. Returns:
  340. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  341. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  342. 存储与标注框相关信息的字典。
  343. Raises:
  344. TypeError: 形参数据类型不满足需求。
  345. ValueError: 数据长度不匹配。
  346. """
  347. if im_info is None:
  348. im_info = dict()
  349. if not isinstance(im, np.ndarray):
  350. raise TypeError("Resize: image type is not numpy.")
  351. if len(im.shape) != 3:
  352. raise ValueError('Resize: image is not 3-dimensional.')
  353. if self.interp == "RANDOM":
  354. interp = random.choice(list(self.interp_dict.keys()))
  355. else:
  356. interp = self.interp
  357. im = resize(im, self.target_size, self.interp_dict[interp])
  358. if label_info is None:
  359. return (im, im_info)
  360. else:
  361. return (im, im_info, label_info)
  362. class RandomHorizontalFlip(DetTransform):
  363. """随机翻转图像、标注框、分割信息,模型训练时的数据增强操作。
  364. 1. 随机采样一个0-1之间的小数,当小数小于水平翻转概率时,
  365. 执行2-4步操作,否则直接返回。
  366. 2. 水平翻转图像。
  367. 3. 计算翻转后的真实标注框的坐标,更新label_info中的gt_bbox信息。
  368. 4. 计算翻转后的真实分割区域的坐标,更新label_info中的gt_poly信息。
  369. Args:
  370. prob (float): 随机水平翻转的概率。默认为0.5。
  371. Raises:
  372. TypeError: 形参数据类型不满足需求。
  373. """
  374. def __init__(self, prob=0.5):
  375. self.prob = prob
  376. if not isinstance(self.prob, float):
  377. raise TypeError("RandomHorizontalFlip: input type is invalid.")
  378. def __call__(self, im, im_info=None, label_info=None):
  379. """
  380. Args:
  381. im (np.ndarray): 图像np.ndarray数据。
  382. im_info (dict, 可选): 存储与图像相关的信息。
  383. label_info (dict, 可选): 存储与标注框相关的信息。
  384. Returns:
  385. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  386. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  387. 存储与标注框相关信息的字典。
  388. 其中,im_info更新字段为:
  389. - gt_bbox (np.ndarray): 水平翻转后的标注框坐标[x1, y1, x2, y2],形状为(n, 4),
  390. 其中n代表真实标注框的个数。
  391. - gt_poly (list): 水平翻转后的多边形分割区域的x、y坐标,长度为n,
  392. 其中n代表真实标注框的个数。
  393. Raises:
  394. TypeError: 形参数据类型不满足需求。
  395. ValueError: 数据长度不匹配。
  396. """
  397. if not isinstance(im, np.ndarray):
  398. raise TypeError(
  399. "RandomHorizontalFlip: image is not a numpy array.")
  400. if len(im.shape) != 3:
  401. raise ValueError(
  402. "RandomHorizontalFlip: image is not 3-dimensional.")
  403. if im_info is None or label_info is None:
  404. raise TypeError(
  405. 'Cannot do RandomHorizontalFlip! ' +
  406. 'Becasuse the im_info and label_info can not be None!')
  407. if 'gt_bbox' not in label_info:
  408. raise TypeError('Cannot do RandomHorizontalFlip! ' + \
  409. 'Becasuse gt_bbox is not in label_info!')
  410. image_shape = im_info['image_shape']
  411. gt_bbox = label_info['gt_bbox']
  412. height = image_shape[0]
  413. width = image_shape[1]
  414. if np.random.uniform(0, 1) < self.prob:
  415. im = horizontal_flip(im)
  416. if gt_bbox.shape[0] == 0:
  417. if label_info is None:
  418. return (im, im_info)
  419. else:
  420. return (im, im_info, label_info)
  421. label_info['gt_bbox'] = box_horizontal_flip(gt_bbox, width)
  422. if 'gt_poly' in label_info and \
  423. len(label_info['gt_poly']) != 0:
  424. label_info['gt_poly'] = segms_horizontal_flip(
  425. label_info['gt_poly'], height, width)
  426. if label_info is None:
  427. return (im, im_info)
  428. else:
  429. return (im, im_info, label_info)
  430. class Normalize(DetTransform):
  431. """对图像进行标准化。
  432. 1. 归一化图像到到区间[0.0, 1.0]。
  433. 2. 对图像进行减均值除以标准差操作。
  434. Args:
  435. mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
  436. std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
  437. Raises:
  438. TypeError: 形参数据类型不满足需求。
  439. """
  440. def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
  441. self.mean = mean
  442. self.std = std
  443. if not (isinstance(self.mean, list) and isinstance(self.std, list)):
  444. raise TypeError("NormalizeImage: input type is invalid.")
  445. from functools import reduce
  446. if reduce(lambda x, y: x * y, self.std) == 0:
  447. raise TypeError('NormalizeImage: std is invalid!')
  448. def __call__(self, im, im_info=None, label_info=None):
  449. """
  450. Args:
  451. im (numnp.ndarraypy): 图像np.ndarray数据。
  452. im_info (dict, 可选): 存储与图像相关的信息。
  453. label_info (dict, 可选): 存储与标注框相关的信息。
  454. Returns:
  455. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  456. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  457. 存储与标注框相关信息的字典。
  458. """
  459. mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
  460. std = np.array(self.std)[np.newaxis, np.newaxis, :]
  461. im = normalize(im, mean, std)
  462. if label_info is None:
  463. return (im, im_info)
  464. else:
  465. return (im, im_info, label_info)
  466. class RandomDistort(DetTransform):
  467. """以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作
  468. 1. 对变换的操作顺序进行随机化操作。
  469. 2. 按照1中的顺序以一定的概率在范围[-range, range]对图像进行随机像素内容变换。
  470. Args:
  471. brightness_range (float): 明亮度因子的范围。默认为0.5。
  472. brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
  473. contrast_range (float): 对比度因子的范围。默认为0.5。
  474. contrast_prob (float): 随机调整对比度的概率。默认为0.5。
  475. saturation_range (float): 饱和度因子的范围。默认为0.5。
  476. saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
  477. hue_range (int): 色调因子的范围。默认为18。
  478. hue_prob (float): 随机调整色调的概率。默认为0.5。
  479. """
  480. def __init__(self,
  481. brightness_range=0.5,
  482. brightness_prob=0.5,
  483. contrast_range=0.5,
  484. contrast_prob=0.5,
  485. saturation_range=0.5,
  486. saturation_prob=0.5,
  487. hue_range=18,
  488. hue_prob=0.5):
  489. self.brightness_range = brightness_range
  490. self.brightness_prob = brightness_prob
  491. self.contrast_range = contrast_range
  492. self.contrast_prob = contrast_prob
  493. self.saturation_range = saturation_range
  494. self.saturation_prob = saturation_prob
  495. self.hue_range = hue_range
  496. self.hue_prob = hue_prob
  497. def __call__(self, im, im_info=None, label_info=None):
  498. """
  499. Args:
  500. im (np.ndarray): 图像np.ndarray数据。
  501. im_info (dict, 可选): 存储与图像相关的信息。
  502. label_info (dict, 可选): 存储与标注框相关的信息。
  503. Returns:
  504. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  505. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  506. 存储与标注框相关信息的字典。
  507. """
  508. brightness_lower = 1 - self.brightness_range
  509. brightness_upper = 1 + self.brightness_range
  510. contrast_lower = 1 - self.contrast_range
  511. contrast_upper = 1 + self.contrast_range
  512. saturation_lower = 1 - self.saturation_range
  513. saturation_upper = 1 + self.saturation_range
  514. hue_lower = -self.hue_range
  515. hue_upper = self.hue_range
  516. ops = [brightness, contrast, saturation, hue]
  517. random.shuffle(ops)
  518. params_dict = {
  519. 'brightness': {
  520. 'brightness_lower': brightness_lower,
  521. 'brightness_upper': brightness_upper
  522. },
  523. 'contrast': {
  524. 'contrast_lower': contrast_lower,
  525. 'contrast_upper': contrast_upper
  526. },
  527. 'saturation': {
  528. 'saturation_lower': saturation_lower,
  529. 'saturation_upper': saturation_upper
  530. },
  531. 'hue': {
  532. 'hue_lower': hue_lower,
  533. 'hue_upper': hue_upper
  534. }
  535. }
  536. prob_dict = {
  537. 'brightness': self.brightness_prob,
  538. 'contrast': self.contrast_prob,
  539. 'saturation': self.saturation_prob,
  540. 'hue': self.hue_prob
  541. }
  542. for id in range(4):
  543. params = params_dict[ops[id].__name__]
  544. prob = prob_dict[ops[id].__name__]
  545. params['im'] = im
  546. if np.random.uniform(0, 1) < prob:
  547. im = ops[id](**params)
  548. if label_info is None:
  549. return (im, im_info)
  550. else:
  551. return (im, im_info, label_info)
  552. class MixupImage(DetTransform):
  553. """对图像进行mixup操作,模型训练时的数据增强操作,目前仅YOLOv3模型支持该transform。
  554. 当label_info中不存在mixup字段时,直接返回,否则进行下述操作:
  555. 1. 从随机beta分布中抽取出随机因子factor。
  556. 2.
  557. - 当factor>=1.0时,去除label_info中的mixup字段,直接返回。
  558. - 当factor<=0.0时,直接返回label_info中的mixup字段,并在label_info中去除该字段。
  559. - 其余情况,执行下述操作:
  560. (1)原图像乘以factor,mixup图像乘以(1-factor),叠加2个结果。
  561. (2)拼接原图像标注框和mixup图像标注框。
  562. (3)拼接原图像标注框类别和mixup图像标注框类别。
  563. (4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
  564. 3. 更新im_info中的image_shape信息。
  565. Args:
  566. alpha (float): 随机beta分布的下限。默认为1.5。
  567. beta (float): 随机beta分布的上限。默认为1.5。
  568. mixup_epoch (int): 在前mixup_epoch轮使用mixup增强操作;当该参数为-1时,该策略不会生效。
  569. 默认为-1。
  570. Raises:
  571. ValueError: 数据长度不匹配。
  572. """
  573. def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
  574. self.alpha = alpha
  575. self.beta = beta
  576. if self.alpha <= 0.0:
  577. raise ValueError("alpha shold be positive in MixupImage")
  578. if self.beta <= 0.0:
  579. raise ValueError("beta shold be positive in MixupImage")
  580. self.mixup_epoch = mixup_epoch
  581. def _mixup_img(self, img1, img2, factor):
  582. h = max(img1.shape[0], img2.shape[0])
  583. w = max(img1.shape[1], img2.shape[1])
  584. img = np.zeros((h, w, img1.shape[2]), 'float32')
  585. img[:img1.shape[0], :img1.shape[1], :] = \
  586. img1.astype('float32') * factor
  587. img[:img2.shape[0], :img2.shape[1], :] += \
  588. img2.astype('float32') * (1.0 - factor)
  589. return img.astype('float32')
  590. def __call__(self, im, im_info=None, label_info=None):
  591. """
  592. Args:
  593. im (np.ndarray): 图像np.ndarray数据。
  594. im_info (dict, 可选): 存储与图像相关的信息。
  595. label_info (dict, 可选): 存储与标注框相关的信息。
  596. Returns:
  597. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  598. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  599. 存储与标注框相关信息的字典。
  600. 其中,im_info更新字段为:
  601. - image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
  602. im_info删除的字段:
  603. - mixup (list): 与当前字段进行mixup的图像相关信息。
  604. label_info更新字段为:
  605. - gt_bbox (np.ndarray): mixup后真实标注框坐标,形状为(n, 4),
  606. 其中n代表真实标注框的个数。
  607. - gt_class (np.ndarray): mixup后每个真实标注框对应的类别序号,形状为(n, 1),
  608. 其中n代表真实标注框的个数。
  609. - gt_score (np.ndarray): mixup后每个真实标注框对应的混合得分,形状为(n, 1),
  610. 其中n代表真实标注框的个数。
  611. Raises:
  612. TypeError: 形参数据类型不满足需求。
  613. """
  614. if im_info is None:
  615. raise TypeError('Cannot do MixupImage! ' +
  616. 'Becasuse the im_info can not be None!')
  617. if 'mixup' not in im_info:
  618. if label_info is None:
  619. return (im, im_info)
  620. else:
  621. return (im, im_info, label_info)
  622. factor = np.random.beta(self.alpha, self.beta)
  623. factor = max(0.0, min(1.0, factor))
  624. if im_info['epoch'] > self.mixup_epoch \
  625. or factor >= 1.0:
  626. im_info.pop('mixup')
  627. if label_info is None:
  628. return (im, im_info)
  629. else:
  630. return (im, im_info, label_info)
  631. if factor <= 0.0:
  632. return im_info.pop('mixup')
  633. im = self._mixup_img(im, im_info['mixup'][0], factor)
  634. if label_info is None:
  635. raise TypeError('Cannot do MixupImage! ' +
  636. 'Becasuse the label_info can not be None!')
  637. if 'gt_bbox' not in label_info or \
  638. 'gt_class' not in label_info or \
  639. 'gt_score' not in label_info:
  640. raise TypeError('Cannot do MixupImage! ' + \
  641. 'Becasuse gt_bbox/gt_class/gt_score is not in label_info!')
  642. gt_bbox1 = label_info['gt_bbox']
  643. gt_bbox2 = im_info['mixup'][2]['gt_bbox']
  644. gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
  645. gt_class1 = label_info['gt_class']
  646. gt_class2 = im_info['mixup'][2]['gt_class']
  647. gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
  648. gt_score1 = label_info['gt_score']
  649. gt_score2 = im_info['mixup'][2]['gt_score']
  650. gt_score = np.concatenate(
  651. (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
  652. if 'gt_poly' in label_info:
  653. gt_poly1 = label_info['gt_poly']
  654. gt_poly2 = im_info['mixup'][2]['gt_poly']
  655. label_info['gt_poly'] = gt_poly1 + gt_poly2
  656. is_crowd1 = label_info['is_crowd']
  657. is_crowd2 = im_info['mixup'][2]['is_crowd']
  658. is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
  659. label_info['gt_bbox'] = gt_bbox
  660. label_info['gt_score'] = gt_score
  661. label_info['gt_class'] = gt_class
  662. label_info['is_crowd'] = is_crowd
  663. im_info['image_shape'] = np.array([im.shape[0],
  664. im.shape[1]]).astype('int32')
  665. im_info.pop('mixup')
  666. if label_info is None:
  667. return (im, im_info)
  668. else:
  669. return (im, im_info, label_info)
  670. class RandomExpand(DetTransform):
  671. """随机扩张图像,模型训练时的数据增强操作。
  672. 1. 随机选取扩张比例(扩张比例大于1时才进行扩张)。
  673. 2. 计算扩张后图像大小。
  674. 3. 初始化像素值为输入填充值的图像,并将原图像随机粘贴于该图像上。
  675. 4. 根据原图像粘贴位置换算出扩张后真实标注框的位置坐标。
  676. 5. 根据原图像粘贴位置换算出扩张后真实分割区域的位置坐标。
  677. Args:
  678. ratio (float): 图像扩张的最大比例。默认为4.0。
  679. prob (float): 随机扩张的概率。默认为0.5。
  680. fill_value (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
  681. """
  682. def __init__(self,
  683. ratio=4.,
  684. prob=0.5,
  685. fill_value=[123.675, 116.28, 103.53]):
  686. super(RandomExpand, self).__init__()
  687. assert ratio > 1.01, "expand ratio must be larger than 1.01"
  688. self.ratio = ratio
  689. self.prob = prob
  690. assert isinstance(fill_value, Sequence), \
  691. "fill value must be sequence"
  692. if not isinstance(fill_value, tuple):
  693. fill_value = tuple(fill_value)
  694. self.fill_value = fill_value
  695. def __call__(self, im, im_info=None, label_info=None):
  696. """
  697. Args:
  698. im (np.ndarray): 图像np.ndarray数据。
  699. im_info (dict, 可选): 存储与图像相关的信息。
  700. label_info (dict, 可选): 存储与标注框相关的信息。
  701. Returns:
  702. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  703. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  704. 存储与标注框相关信息的字典。
  705. 其中,im_info更新字段为:
  706. - image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
  707. label_info更新字段为:
  708. - gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
  709. 其中n代表真实标注框的个数。
  710. - gt_class (np.ndarray): 随机扩张后每个真实标注框对应的类别序号,形状为(n, 1),
  711. 其中n代表真实标注框的个数。
  712. Raises:
  713. TypeError: 形参数据类型不满足需求。
  714. """
  715. if im_info is None or label_info is None:
  716. raise TypeError(
  717. 'Cannot do RandomExpand! ' +
  718. 'Becasuse the im_info and label_info can not be None!')
  719. if 'gt_bbox' not in label_info or \
  720. 'gt_class' not in label_info:
  721. raise TypeError('Cannot do RandomExpand! ' + \
  722. 'Becasuse gt_bbox/gt_class is not in label_info!')
  723. if np.random.uniform(0., 1.) < self.prob:
  724. return (im, im_info, label_info)
  725. image_shape = im_info['image_shape']
  726. height = int(image_shape[0])
  727. width = int(image_shape[1])
  728. expand_ratio = np.random.uniform(1., self.ratio)
  729. h = int(height * expand_ratio)
  730. w = int(width * expand_ratio)
  731. if not h > height or not w > width:
  732. return (im, im_info, label_info)
  733. y = np.random.randint(0, h - height)
  734. x = np.random.randint(0, w - width)
  735. canvas = np.ones((h, w, 3), dtype=np.float32)
  736. canvas *= np.array(self.fill_value, dtype=np.float32)
  737. canvas[y:y + height, x:x + width, :] = im
  738. im_info['image_shape'] = np.array([h, w]).astype('int32')
  739. if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
  740. label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
  741. if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
  742. label_info['gt_poly'] = expand_segms(label_info['gt_poly'], x, y,
  743. height, width, expand_ratio)
  744. return (canvas, im_info, label_info)
  745. class RandomCrop(DetTransform):
  746. """随机裁剪图像。
  747. 1. 若allow_no_crop为True,则在thresholds加入’no_crop’。
  748. 2. 随机打乱thresholds。
  749. 3. 遍历thresholds中各元素:
  750. (1) 如果当前thresh为’no_crop’,则返回原始图像和标注信息。
  751. (2) 随机取出aspect_ratio和scaling中的值并由此计算出候选裁剪区域的高、宽、起始点。
  752. (3) 计算真实标注框与候选裁剪区域IoU,若全部真实标注框的IoU都小于thresh,则继续第3步。
  753. (4) 如果cover_all_box为True且存在真实标注框的IoU小于thresh,则继续第3步。
  754. (5) 筛选出位于候选裁剪区域内的真实标注框,若有效框的个数为0,则继续第3步,否则进行第4步。
  755. 4. 换算有效真值标注框相对候选裁剪区域的位置坐标。
  756. 5. 换算有效分割区域相对候选裁剪区域的位置坐标。
  757. Args:
  758. aspect_ratio (list): 裁剪后短边缩放比例的取值范围,以[min, max]形式表示。默认值为[.5, 2.]。
  759. thresholds (list): 判断裁剪候选区域是否有效所需的IoU阈值取值列表。默认值为[.0, .1, .3, .5, .7, .9]。
  760. scaling (list): 裁剪面积相对原面积的取值范围,以[min, max]形式表示。默认值为[.3, 1.]。
  761. num_attempts (int): 在放弃寻找有效裁剪区域前尝试的次数。默认值为50。
  762. allow_no_crop (bool): 是否允许未进行裁剪。默认值为True。
  763. cover_all_box (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
  764. """
  765. def __init__(self,
  766. aspect_ratio=[.5, 2.],
  767. thresholds=[.0, .1, .3, .5, .7, .9],
  768. scaling=[.3, 1.],
  769. num_attempts=50,
  770. allow_no_crop=True,
  771. cover_all_box=False):
  772. self.aspect_ratio = aspect_ratio
  773. self.thresholds = thresholds
  774. self.scaling = scaling
  775. self.num_attempts = num_attempts
  776. self.allow_no_crop = allow_no_crop
  777. self.cover_all_box = cover_all_box
  778. def __call__(self, im, im_info=None, label_info=None):
  779. """
  780. Args:
  781. im (np.ndarray): 图像np.ndarray数据。
  782. im_info (dict, 可选): 存储与图像相关的信息。
  783. label_info (dict, 可选): 存储与标注框相关的信息。
  784. Returns:
  785. tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
  786. 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
  787. 存储与标注框相关信息的字典。
  788. 其中,im_info更新字段为:
  789. - image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
  790. label_info更新字段为:
  791. - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
  792. 其中n代表真实标注框的个数。
  793. - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
  794. 其中n代表真实标注框的个数。
  795. - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
  796. 其中n代表真实标注框的个数。
  797. Raises:
  798. TypeError: 形参数据类型不满足需求。
  799. """
  800. if im_info is None or label_info is None:
  801. raise TypeError(
  802. 'Cannot do RandomCrop! ' +
  803. 'Becasuse the im_info and label_info can not be None!')
  804. if 'gt_bbox' not in label_info or \
  805. 'gt_class' not in label_info:
  806. raise TypeError('Cannot do RandomCrop! ' + \
  807. 'Becasuse gt_bbox/gt_class is not in label_info!')
  808. if len(label_info['gt_bbox']) == 0:
  809. return (im, im_info, label_info)
  810. image_shape = im_info['image_shape']
  811. w = image_shape[1]
  812. h = image_shape[0]
  813. gt_bbox = label_info['gt_bbox']
  814. thresholds = list(self.thresholds)
  815. if self.allow_no_crop:
  816. thresholds.append('no_crop')
  817. np.random.shuffle(thresholds)
  818. for thresh in thresholds:
  819. if thresh == 'no_crop':
  820. return (im, im_info, label_info)
  821. found = False
  822. for i in range(self.num_attempts):
  823. scale = np.random.uniform(*self.scaling)
  824. min_ar, max_ar = self.aspect_ratio
  825. aspect_ratio = np.random.uniform(
  826. max(min_ar, scale**2), min(max_ar, scale**-2))
  827. crop_h = int(h * scale / np.sqrt(aspect_ratio))
  828. crop_w = int(w * scale * np.sqrt(aspect_ratio))
  829. crop_y = np.random.randint(0, h - crop_h)
  830. crop_x = np.random.randint(0, w - crop_w)
  831. crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
  832. iou = iou_matrix(
  833. gt_bbox, np.array(
  834. [crop_box], dtype=np.float32))
  835. if iou.max() < thresh:
  836. continue
  837. if self.cover_all_box and iou.min() < thresh:
  838. continue
  839. cropped_box, valid_ids = crop_box_with_center_constraint(
  840. gt_bbox, np.array(
  841. crop_box, dtype=np.float32))
  842. if valid_ids.size > 0:
  843. found = True
  844. break
  845. if found:
  846. if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
  847. crop_polys = crop_segms(
  848. label_info['gt_poly'],
  849. valid_ids,
  850. np.array(
  851. crop_box, dtype=np.int64),
  852. h,
  853. w)
  854. if [] in crop_polys:
  855. delete_id = list()
  856. valid_polys = list()
  857. for id, crop_poly in enumerate(crop_polys):
  858. if crop_poly == []:
  859. delete_id.append(id)
  860. else:
  861. valid_polys.append(crop_poly)
  862. valid_ids = np.delete(valid_ids, delete_id)
  863. if len(valid_polys) == 0:
  864. return (im, im_info, label_info)
  865. label_info['gt_poly'] = valid_polys
  866. else:
  867. label_info['gt_poly'] = crop_polys
  868. im = crop_image(im, crop_box)
  869. label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
  870. label_info['gt_class'] = np.take(
  871. label_info['gt_class'], valid_ids, axis=0)
  872. im_info['image_shape'] = np.array(
  873. [crop_box[3] - crop_box[1],
  874. crop_box[2] - crop_box[0]]).astype('int32')
  875. if 'gt_score' in label_info:
  876. label_info['gt_score'] = np.take(
  877. label_info['gt_score'], valid_ids, axis=0)
  878. if 'is_crowd' in label_info:
  879. label_info['is_crowd'] = np.take(
  880. label_info['is_crowd'], valid_ids, axis=0)
  881. return (im, im_info, label_info)
  882. return (im, im_info, label_info)
  883. class ArrangeFasterRCNN(DetTransform):
  884. """获取FasterRCNN模型训练/验证/预测所需信息。
  885. Args:
  886. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  887. Raises:
  888. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  889. """
  890. def __init__(self, mode=None):
  891. if mode not in ['train', 'eval', 'test', 'quant']:
  892. raise ValueError(
  893. "mode must be in ['train', 'eval', 'test', 'quant']!")
  894. self.mode = mode
  895. def __call__(self, im, im_info=None, label_info=None):
  896. """
  897. Args:
  898. im (np.ndarray): 图像np.ndarray数据。
  899. im_info (dict, 可选): 存储与图像相关的信息。
  900. label_info (dict, 可选): 存储与标注框相关的信息。
  901. Returns:
  902. tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd),分别对应
  903. 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象;
  904. 当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape, gt_bbox, gt_class, is_difficult),
  905. 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像id、图像大小信息、真实标注框、真实标注框对应的类别、
  906. 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),分别对应图像np.ndarray数据、
  907. 图像相当对于原图的resize信息、图像大小信息。
  908. Raises:
  909. TypeError: 形参数据类型不满足需求。
  910. ValueError: 数据长度不匹配。
  911. """
  912. im = permute(im, False)
  913. if self.mode == 'train':
  914. if im_info is None or label_info is None:
  915. raise TypeError(
  916. 'Cannot do ArrangeFasterRCNN! ' +
  917. 'Becasuse the im_info and label_info can not be None!')
  918. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  919. raise ValueError("gt num mismatch: bbox and class.")
  920. im_resize_info = im_info['im_resize_info']
  921. gt_bbox = label_info['gt_bbox']
  922. gt_class = label_info['gt_class']
  923. is_crowd = label_info['is_crowd']
  924. outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd)
  925. elif self.mode == 'eval':
  926. if im_info is None or label_info is None:
  927. raise TypeError(
  928. 'Cannot do ArrangeFasterRCNN! ' +
  929. 'Becasuse the im_info and label_info can not be None!')
  930. im_resize_info = im_info['im_resize_info']
  931. im_id = im_info['im_id']
  932. im_shape = np.array(
  933. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  934. dtype=np.float32)
  935. gt_bbox = label_info['gt_bbox']
  936. gt_class = label_info['gt_class']
  937. is_difficult = label_info['difficult']
  938. outputs = (im, im_resize_info, im_id, im_shape, gt_bbox, gt_class,
  939. is_difficult)
  940. else:
  941. if im_info is None:
  942. raise TypeError('Cannot do ArrangeFasterRCNN! ' +
  943. 'Becasuse the im_info can not be None!')
  944. im_resize_info = im_info['im_resize_info']
  945. im_shape = np.array(
  946. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  947. dtype=np.float32)
  948. outputs = (im, im_resize_info, im_shape)
  949. return outputs
  950. class ArrangeMaskRCNN(DetTransform):
  951. """获取MaskRCNN模型训练/验证/预测所需信息。
  952. Args:
  953. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  954. Raises:
  955. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  956. """
  957. def __init__(self, mode=None):
  958. if mode not in ['train', 'eval', 'test', 'quant']:
  959. raise ValueError(
  960. "mode must be in ['train', 'eval', 'test', 'quant']!")
  961. self.mode = mode
  962. def __call__(self, im, im_info=None, label_info=None):
  963. """
  964. Args:
  965. im (np.ndarray): 图像np.ndarray数据。
  966. im_info (dict, 可选): 存储与图像相关的信息。
  967. label_info (dict, 可选): 存储与标注框相关的信息。
  968. Returns:
  969. tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd, gt_masks),分别对应
  970. 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象、
  971. 真实分割区域;当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape),分别对应图像np.ndarray数据、
  972. 图像相当对于原图的resize信息、图像id、图像大小信息;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),
  973. 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像大小信息。
  974. Raises:
  975. TypeError: 形参数据类型不满足需求。
  976. ValueError: 数据长度不匹配。
  977. """
  978. im = permute(im, False)
  979. if self.mode == 'train':
  980. if im_info is None or label_info is None:
  981. raise TypeError(
  982. 'Cannot do ArrangeTrainMaskRCNN! ' +
  983. 'Becasuse the im_info and label_info can not be None!')
  984. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  985. raise ValueError("gt num mismatch: bbox and class.")
  986. im_resize_info = im_info['im_resize_info']
  987. gt_bbox = label_info['gt_bbox']
  988. gt_class = label_info['gt_class']
  989. is_crowd = label_info['is_crowd']
  990. assert 'gt_poly' in label_info
  991. segms = label_info['gt_poly']
  992. if len(segms) != 0:
  993. assert len(segms) == is_crowd.shape[0]
  994. gt_masks = []
  995. valid = True
  996. for i in range(len(segms)):
  997. segm = segms[i]
  998. gt_segm = []
  999. if is_crowd[i]:
  1000. gt_segm.append([[0, 0]])
  1001. else:
  1002. for poly in segm:
  1003. if len(poly) == 0:
  1004. valid = False
  1005. break
  1006. gt_segm.append(np.array(poly).reshape(-1, 2))
  1007. if (not valid) or len(gt_segm) == 0:
  1008. break
  1009. gt_masks.append(gt_segm)
  1010. outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd,
  1011. gt_masks)
  1012. else:
  1013. if im_info is None:
  1014. raise TypeError('Cannot do ArrangeMaskRCNN! ' +
  1015. 'Becasuse the im_info can not be None!')
  1016. im_resize_info = im_info['im_resize_info']
  1017. im_shape = np.array(
  1018. (im_info['image_shape'][0], im_info['image_shape'][1], 1),
  1019. dtype=np.float32)
  1020. if self.mode == 'eval':
  1021. im_id = im_info['im_id']
  1022. outputs = (im, im_resize_info, im_id, im_shape)
  1023. else:
  1024. outputs = (im, im_resize_info, im_shape)
  1025. return outputs
  1026. class ArrangeYOLOv3(DetTransform):
  1027. """获取YOLOv3模型训练/验证/预测所需信息。
  1028. Args:
  1029. mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
  1030. Raises:
  1031. ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
  1032. """
  1033. def __init__(self, mode=None):
  1034. if mode not in ['train', 'eval', 'test', 'quant']:
  1035. raise ValueError(
  1036. "mode must be in ['train', 'eval', 'test', 'quant']!")
  1037. self.mode = mode
  1038. def __call__(self, im, im_info=None, label_info=None):
  1039. """
  1040. Args:
  1041. im (np.ndarray): 图像np.ndarray数据。
  1042. im_info (dict, 可选): 存储与图像相关的信息。
  1043. label_info (dict, 可选): 存储与标注框相关的信息。
  1044. Returns:
  1045. tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
  1046. 图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
  1047. 当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
  1048. 分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
  1049. 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
  1050. 分别对应图像np.ndarray数据、图像大小信息。
  1051. Raises:
  1052. TypeError: 形参数据类型不满足需求。
  1053. ValueError: 数据长度不匹配。
  1054. """
  1055. im = permute(im, False)
  1056. if self.mode == 'train':
  1057. if im_info is None or label_info is None:
  1058. raise TypeError(
  1059. 'Cannot do ArrangeYolov3! ' +
  1060. 'Becasuse the im_info and label_info can not be None!')
  1061. im_shape = im_info['image_shape']
  1062. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  1063. raise ValueError("gt num mismatch: bbox and class.")
  1064. if len(label_info['gt_bbox']) != len(label_info['gt_score']):
  1065. raise ValueError("gt num mismatch: bbox and score.")
  1066. gt_bbox = np.zeros((50, 4), dtype=im.dtype)
  1067. gt_class = np.zeros((50, ), dtype=np.int32)
  1068. gt_score = np.zeros((50, ), dtype=im.dtype)
  1069. gt_num = min(50, len(label_info['gt_bbox']))
  1070. if gt_num > 0:
  1071. label_info['gt_class'][:gt_num, 0] = label_info[
  1072. 'gt_class'][:gt_num, 0] - 1
  1073. gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
  1074. gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
  1075. gt_score[:gt_num] = label_info['gt_score'][:gt_num, 0]
  1076. # parse [x1, y1, x2, y2] to [x, y, w, h]
  1077. gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
  1078. gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
  1079. outputs = (im, gt_bbox, gt_class, gt_score, im_shape)
  1080. elif self.mode == 'eval':
  1081. if im_info is None or label_info is None:
  1082. raise TypeError(
  1083. 'Cannot do ArrangeYolov3! ' +
  1084. 'Becasuse the im_info and label_info can not be None!')
  1085. im_shape = im_info['image_shape']
  1086. if len(label_info['gt_bbox']) != len(label_info['gt_class']):
  1087. raise ValueError("gt num mismatch: bbox and class.")
  1088. im_id = im_info['im_id']
  1089. gt_bbox = np.zeros((50, 4), dtype=im.dtype)
  1090. gt_class = np.zeros((50, ), dtype=np.int32)
  1091. difficult = np.zeros((50, ), dtype=np.int32)
  1092. gt_num = min(50, len(label_info['gt_bbox']))
  1093. if gt_num > 0:
  1094. label_info['gt_class'][:gt_num, 0] = label_info[
  1095. 'gt_class'][:gt_num, 0] - 1
  1096. gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
  1097. gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
  1098. difficult[:gt_num] = label_info['difficult'][:gt_num, 0]
  1099. outputs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
  1100. else:
  1101. if im_info is None:
  1102. raise TypeError('Cannot do ArrangeYolov3! ' +
  1103. 'Becasuse the im_info can not be None!')
  1104. im_shape = im_info['image_shape']
  1105. outputs = (im, im_shape)
  1106. return outputs
  1107. class ComposedRCNNTransforms(Compose):
  1108. """ RCNN模型(faster-rcnn/mask-rcnn)图像处理流程,具体如下,
  1109. 训练阶段:
  1110. 1. 随机以0.5的概率将图像水平翻转
  1111. 2. 图像归一化
  1112. 3. 图像按比例Resize,scale计算方式如下
  1113. scale = min_max_size[0] / short_size_of_image
  1114. if max_size_of_image * scale > min_max_size[1]:
  1115. scale = min_max_size[1] / max_size_of_image
  1116. 4. 将3步骤的长宽进行padding,使得长宽为32的倍数
  1117. 验证阶段:
  1118. 1. 图像归一化
  1119. 2. 图像按比例Resize,scale计算方式同上训练阶段
  1120. 3. 将2步骤的长宽进行padding,使得长宽为32的倍数
  1121. Args:
  1122. mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
  1123. min_max_size(list): 图像在缩放时,最小边和最大边的约束条件
  1124. mean(list): 图像均值
  1125. std(list): 图像方差
  1126. """
  1127. def __init__(self,
  1128. mode,
  1129. min_max_size=[800, 1333],
  1130. mean=[0.485, 0.456, 0.406],
  1131. std=[0.229, 0.224, 0.225]):
  1132. if mode == 'train':
  1133. # 训练时的transforms,包含数据增强
  1134. transforms = [
  1135. RandomHorizontalFlip(prob=0.5), Normalize(
  1136. mean=mean, std=std), ResizeByShort(
  1137. short_size=min_max_size[0], max_size=min_max_size[1]),
  1138. Padding(coarsest_stride=32)
  1139. ]
  1140. else:
  1141. # 验证/预测时的transforms
  1142. transforms = [
  1143. Normalize(
  1144. mean=mean, std=std), ResizeByShort(
  1145. short_size=min_max_size[0], max_size=min_max_size[1]),
  1146. Padding(coarsest_stride=32)
  1147. ]
  1148. super(ComposedRCNNTransforms, self).__init__(transforms)
  1149. class ComposedYOLOTransforms(Compose):
  1150. """YOLOv3模型的图像预处理流程,具体如下,
  1151. 训练阶段:
  1152. 1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
  1153. 2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
  1154. 3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
  1155. 4. 随机裁剪图像
  1156. 5. 将4步骤的输出图像Resize成shape参数的大小
  1157. 6. 随机0.5的概率水平翻转图像
  1158. 7. 图像归一化
  1159. 验证/预测阶段:
  1160. 1. 将图像Resize成shape参数大小
  1161. 2. 图像归一化
  1162. Args:
  1163. mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
  1164. shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
  1165. mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略
  1166. mean(list): 图像均值
  1167. std(list): 图像方差
  1168. """
  1169. def __init__(self,
  1170. mode,
  1171. shape=[608, 608],
  1172. mixup_epoch=250,
  1173. mean=[0.485, 0.456, 0.406],
  1174. std=[0.229, 0.224, 0.225]):
  1175. width = shape
  1176. if isinstance(shape, list):
  1177. if shape[0] != shape[1]:
  1178. raise Exception(
  1179. "In YOLOv3 model, width and height should be equal")
  1180. width = shape[0]
  1181. if width % 32 != 0:
  1182. raise Exception(
  1183. "In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
  1184. )
  1185. if mode == 'train':
  1186. # 训练时的transforms,包含数据增强
  1187. transforms = [
  1188. MixupImage(mixup_epoch=mixup_epoch), RandomDistort(),
  1189. RandomExpand(), RandomCrop(), Resize(
  1190. target_size=width,
  1191. interp='RANDOM'), RandomHorizontalFlip(), Normalize(
  1192. mean=mean, std=std)
  1193. ]
  1194. else:
  1195. # 验证/预测时的transforms
  1196. transforms = [
  1197. Resize(
  1198. target_size=width, interp='CUBIC'), Normalize(
  1199. mean=mean, std=std)
  1200. ]
  1201. super(ComposedYOLOTransforms, self).__init__(transforms)