transforms.cpp 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "include/paddlex/transforms.h"
  15. #include <math.h>
  16. #include <iostream>
  17. #include <string>
  18. #include <vector>
  19. namespace PaddleX {
  20. std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
  21. {"NEAREST", cv::INTER_NEAREST},
  22. {"AREA", cv::INTER_AREA},
  23. {"CUBIC", cv::INTER_CUBIC},
  24. {"LANCZOS4", cv::INTER_LANCZOS4}};
  25. bool Normalize::Run(cv::Mat* im, ImageBlob* data) {
  26. std::vector<float> range_val;
  27. for (int c = 0; c < im->channels(); c++) {
  28. range_val.push_back(max_val_[c] - min_val_[c]);
  29. }
  30. std::vector<cv::Mat> split_im;
  31. cv::split(*im, split_im);
  32. for (int c = 0; c < im->channels(); c++) {
  33. cv::subtract(split_im[c], cv::Scalar(min_val_[c]), split_im[c]);
  34. cv::divide(split_im[c], cv::Scalar(range_val[c]), split_im[c]);
  35. cv::subtract(split_im[c], cv::Scalar(mean_[c]), split_im[c]);
  36. cv::divide(split_im[c], cv::Scalar(std_[c]), split_im[c]);
  37. }
  38. cv::merge(split_im, *im);
  39. return true;
  40. }
  41. float ResizeByShort::GenerateScale(const cv::Mat& im) {
  42. int origin_w = im.cols;
  43. int origin_h = im.rows;
  44. int im_size_max = std::max(origin_w, origin_h);
  45. int im_size_min = std::min(origin_w, origin_h);
  46. float scale =
  47. static_cast<float>(short_size_) / static_cast<float>(im_size_min);
  48. if (max_size_ > 0) {
  49. if (round(scale * im_size_max) > max_size_) {
  50. scale = static_cast<float>(max_size_) / static_cast<float>(im_size_max);
  51. }
  52. }
  53. return scale;
  54. }
  55. bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) {
  56. data->im_size_before_resize_.push_back({im->rows, im->cols});
  57. data->reshape_order_.push_back("resize");
  58. float scale = GenerateScale(*im);
  59. int width = static_cast<int>(round(scale * im->cols));
  60. int height = static_cast<int>(round(scale * im->rows));
  61. cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);
  62. data->new_im_size_[0] = im->rows;
  63. data->new_im_size_[1] = im->cols;
  64. data->scale = scale;
  65. return true;
  66. }
  67. bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
  68. int height = static_cast<int>(im->rows);
  69. int width = static_cast<int>(im->cols);
  70. if (height < height_ || width < width_) {
  71. std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
  72. return false;
  73. }
  74. int offset_x = static_cast<int>((width - width_) / 2);
  75. int offset_y = static_cast<int>((height - height_) / 2);
  76. cv::Rect crop_roi(offset_x, offset_y, width_, height_);
  77. *im = (*im)(crop_roi);
  78. data->new_im_size_[0] = im->rows;
  79. data->new_im_size_[1] = im->cols;
  80. return true;
  81. }
  82. bool Padding::Run(cv::Mat* im, ImageBlob* data) {
  83. data->im_size_before_resize_.push_back({im->rows, im->cols});
  84. data->reshape_order_.push_back("padding");
  85. int padding_w = 0;
  86. int padding_h = 0;
  87. if (width_ > 1 & height_ > 1) {
  88. padding_w = width_ - im->cols;
  89. padding_h = height_ - im->rows;
  90. } else if (coarsest_stride_ >= 1) {
  91. int h = im->rows;
  92. int w = im->cols;
  93. padding_h =
  94. ceil(h * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows;
  95. padding_w =
  96. ceil(w * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols;
  97. }
  98. if (padding_h < 0 || padding_w < 0) {
  99. std::cerr << "[Padding] Computed padding_h=" << padding_h
  100. << ", padding_w=" << padding_w
  101. << ", but they should be greater than 0." << std::endl;
  102. return false;
  103. }
  104. std::vector<cv::Mat> padded_im_per_channel;
  105. for (size_t i = 0; i < im->channels(); i++) {
  106. const cv::Mat per_channel = cv::Mat(im->rows + padding_h,
  107. im->cols + padding_w,
  108. CV_32FC1,
  109. cv::Scalar(im_value_[i]));
  110. padded_im_per_channel.push_back(per_channel);
  111. }
  112. cv::Mat padded_im;
  113. cv::merge(padded_im_per_channel, padded_im);
  114. cv::Rect im_roi = cv::Rect(0, 0, im->cols, im->rows);
  115. im->copyTo(padded_im(im_roi));
  116. *im = padded_im;
  117. data->new_im_size_[0] = im->rows;
  118. data->new_im_size_[1] = im->cols;
  119. return true;
  120. }
  121. bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
  122. if (long_size_ <= 0) {
  123. std::cerr << "[ResizeByLong] long_size should be greater than 0"
  124. << std::endl;
  125. return false;
  126. }
  127. data->im_size_before_resize_.push_back({im->rows, im->cols});
  128. data->reshape_order_.push_back("resize");
  129. int origin_w = im->cols;
  130. int origin_h = im->rows;
  131. int im_size_max = std::max(origin_w, origin_h);
  132. float scale =
  133. static_cast<float>(long_size_) / static_cast<float>(im_size_max);
  134. cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST);
  135. data->new_im_size_[0] = im->rows;
  136. data->new_im_size_[1] = im->cols;
  137. data->scale = scale;
  138. return true;
  139. }
  140. bool Resize::Run(cv::Mat* im, ImageBlob* data) {
  141. if (width_ <= 0 || height_ <= 0) {
  142. std::cerr << "[Resize] width and height should be greater than 0"
  143. << std::endl;
  144. return false;
  145. }
  146. if (interpolations.count(interp_) <= 0) {
  147. std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'"
  148. << std::endl;
  149. return false;
  150. }
  151. data->im_size_before_resize_.push_back({im->rows, im->cols});
  152. data->reshape_order_.push_back("resize");
  153. cv::resize(
  154. *im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]);
  155. data->new_im_size_[0] = im->rows;
  156. data->new_im_size_[1] = im->cols;
  157. return true;
  158. }
  159. bool Clip::Run(cv::Mat* im, ImageBlob* data) {
  160. std::vector<cv::Mat> split_im;
  161. cv::split(*im, split_im);
  162. for (int c = 0; c < im->channels(); c++) {
  163. cv::threshold(split_im[c], split_im[c], max_val_[c], max_val_[c],
  164. cv::THRESH_TRUNC);
  165. cv::subtract(cv::Scalar(0), split_im[c], split_im[c]);
  166. cv::threshold(split_im[c], split_im[c], min_val_[c], min_val_[c],
  167. cv::THRESH_TRUNC);
  168. cv::divide(split_im[c], cv::Scalar(-1), split_im[c]);
  169. }
  170. cv::merge(split_im, *im);
  171. return true;
  172. }
  173. void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
  174. transforms_.clear();
  175. to_rgb_ = to_rgb;
  176. for (const auto& item : transforms_node) {
  177. std::string name = item.begin()->first.as<std::string>();
  178. std::shared_ptr<Transform> transform = CreateTransform(name);
  179. transform->Init(item.begin()->second);
  180. transforms_.push_back(transform);
  181. }
  182. }
  183. std::shared_ptr<Transform> Transforms::CreateTransform(
  184. const std::string& transform_name) {
  185. if (transform_name == "Normalize") {
  186. return std::make_shared<Normalize>();
  187. } else if (transform_name == "ResizeByShort") {
  188. return std::make_shared<ResizeByShort>();
  189. } else if (transform_name == "CenterCrop") {
  190. return std::make_shared<CenterCrop>();
  191. } else if (transform_name == "Resize") {
  192. return std::make_shared<Resize>();
  193. } else if (transform_name == "Padding") {
  194. return std::make_shared<Padding>();
  195. } else if (transform_name == "ResizeByLong") {
  196. return std::make_shared<ResizeByLong>();
  197. } else if (transform_name == "Clip") {
  198. return std::make_shared<Clip>();
  199. } else {
  200. std::cerr << "There's unexpected transform(name='" << transform_name
  201. << "')." << std::endl;
  202. exit(-1);
  203. }
  204. }
  205. bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
  206. // do all preprocess ops by order
  207. if (to_rgb_) {
  208. cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
  209. }
  210. (*im).convertTo(*im, CV_32FC(im->channels()));
  211. data->ori_im_size_[0] = im->rows;
  212. data->ori_im_size_[1] = im->cols;
  213. data->new_im_size_[0] = im->rows;
  214. data->new_im_size_[1] = im->cols;
  215. for (int i = 0; i < transforms_.size(); ++i) {
  216. if (!transforms_[i]->Run(im, data)) {
  217. std::cerr << "Apply transforms to image failed!" << std::endl;
  218. return false;
  219. }
  220. }
  221. // data format NHWC to NCHW
  222. // img data save to ImageBlob
  223. int h = im->rows;
  224. int w = im->cols;
  225. int c = im->channels();
  226. (data->im_data_).resize(c * h * w);
  227. float* ptr = (data->im_data_).data();
  228. for (int i = 0; i < c; ++i) {
  229. cv::extractChannel(*im, cv::Mat(h, w, CV_32FC1, ptr + i * h * w), i);
  230. }
  231. return true;
  232. }
  233. } // namespace PaddleX