SeaFormer_base.yaml 1.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. batch_size: 8
  2. iters: 80000
  3. model:
  4. type: SeaFormerSeg
  5. backbone:
  6. type: SeaFormer_base
  7. pretrained: https://paddleseg.bj.bcebos.com/dygraph/backbone/seaformer_base_imagenet_pretrained.zip
  8. head_channels: 160
  9. embed_dims: [128, 160]
  10. is_dw: True
  11. dropout_ratio: 0.1
  12. align_corners: False
  13. input_transform: 'multiple_select'
  14. train_dataset:
  15. type: Dataset
  16. dataset_root: data/Cityscapes/
  17. train_path: datasets/Cityscapes/train.txt
  18. num_classes: 19
  19. transforms:
  20. - type: ResizeStepScaling
  21. min_scale_factor: 0.5
  22. max_scale_factor: 2.0
  23. scale_step_size: 0.25
  24. - type: RandomPaddingCrop
  25. crop_size: [512, 512]
  26. - type: RandomHorizontalFlip
  27. - type: RandomDistort
  28. brightness_range: 0.4
  29. contrast_range: 0.4
  30. saturation_range: 0.4
  31. - type: Normalize
  32. mode: train
  33. val_dataset:
  34. type: Dataset
  35. dataset_root: datasets/Cityscapes
  36. val_path: datasets/Cityscapes/val.txt
  37. num_classes: 19
  38. transforms:
  39. - type: Normalize
  40. mode: val
  41. optimizer:
  42. type: AdamW
  43. beta1: 0.9
  44. beta2: 0.999
  45. weight_decay: 0.01
  46. custom_cfg:
  47. - name: pos_emb
  48. weight_decay_mult: 0.0
  49. - name: head
  50. lr_mult: 10.0
  51. - name: norm
  52. weight_decay_mult: 0.0
  53. lr_scheduler:
  54. type: PolynomialDecay
  55. learning_rate: 0.00025
  56. power: 1.0
  57. warmup_iters: 1500
  58. warmup_start_lr: 1.0e-6
  59. end_lr: 0
  60. loss:
  61. types:
  62. - type: CrossEntropyLoss
  63. coef: [1]