| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- from paddlex.det import transforms
- import paddlex as pdx
- insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
- pdx.utils.download_and_decompress(insect_dataset, path='./')
- train_transforms = transforms.Compose([
- transforms.MixupImage(mixup_epoch=250),
- transforms.RandomDistort(),
- transforms.RandomExpand(),
- transforms.RandomCrop(),
- transforms.Resize(
- target_size=608, interp='RANDOM'),
- transforms.RandomHorizontalFlip(),
- transforms.Normalize(),
- ])
- eval_transforms = transforms.Compose([
- transforms.Resize(
- target_size=608, interp='CUBIC'),
- transforms.Normalize(),
- ])
- train_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/train_list.txt',
- label_list='insect_det/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/val_list.txt',
- label_list='insect_det/labels.txt',
- transforms=eval_transforms)
- num_classes = len(train_dataset.labels)
- model = pdx.det.YOLOv3(num_classes=num_classes, backbone='MobileNetV1')
- model.train(
- num_epochs=270,
- train_dataset=train_dataset,
- train_batch_size=8,
- eval_dataset=eval_dataset,
- learning_rate=0.000125,
- lr_decay_epochs=[210, 240],
- save_dir='output/yolov3_mobilenetv1',
- use_vdl=True)
|