| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ...base import BaseModel
- from ...base.utils.arg import CLIArgument
- from ...base.utils.subprocess import CompletedProcess
- from ....utils.misc import abspath
- from .config import DetConfig
- class DetModel(BaseModel):
- """ Object Detection Model """
- def train(self,
- batch_size: int=None,
- learning_rate: float=None,
- epochs_iters: int=None,
- ips: str=None,
- device: str='gpu',
- resume_path: str=None,
- dy2st: bool=False,
- amp: str='OFF',
- num_workers: int=None,
- use_vdl: bool=True,
- save_dir: str=None,
- **kwargs) -> CompletedProcess:
- """train self
- Args:
- batch_size (int, optional): the train batch size value. Defaults to None.
- learning_rate (float, optional): the train learning rate value. Defaults to None.
- epochs_iters (int, optional): the train epochs value. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- resume_path (str, optional): the checkpoint file path to resume training. Train from scratch if it is set
- to None. Defaults to None.
- dy2st (bool, optional): Enable dynamic to static. Defaults to False.
- amp (str, optional): the amp settings. Defaults to 'OFF'.
- num_workers (int, optional): the workers number. Defaults to None.
- use_vdl (bool, optional): enable VisualDL. Defaults to True.
- save_dir (str, optional): the directory path to save train output. Defaults to None.
- Returns:
- CompletedProcess: the result of training subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- if batch_size is not None:
- config.update_batch_size(batch_size, 'train')
- if learning_rate is not None:
- config.update_learning_rate(learning_rate)
- if epochs_iters is not None:
- config.update_epochs(epochs_iters)
- config.update_cossch_epoch(epochs_iters)
- device_type, _ = self.runner.parse_device(device)
- config.update_device(device_type)
- if resume_path is not None:
- assert resume_path.endswith('.pdparams'), \
- 'resume_path should be endswith .pdparam'
- resume_dir = resume_path[0:-9]
- cli_args.append(CLIArgument('--resume', resume_dir))
- if dy2st:
- cli_args.append(CLIArgument('--to_static'))
- if amp != 'OFF' and amp is not None:
- # TODO: consider amp is O1 or O2 in ppdet
- cli_args.append(CLIArgument('--amp'))
- if num_workers is not None:
- config.update_num_workers(num_workers)
- if save_dir is None:
- save_dir = abspath(config.get_train_save_dir())
- else:
- save_dir = abspath(save_dir)
- config.update_save_dir(save_dir)
- if use_vdl:
- cli_args.append(CLIArgument('--use_vdl', use_vdl))
- cli_args.append(CLIArgument('--vdl_log_dir', save_dir))
- do_eval = kwargs.pop('do_eval', True)
- profile = kwargs.pop('profile', None)
- if profile is not None:
- cli_args.append(CLIArgument('--profiler_options', profile))
- enable_ce = kwargs.pop('enable_ce', None)
- if enable_ce is not None:
- cli_args.append(CLIArgument('--enable_ce', enable_ce))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.train(
- config_path, cli_args, device, ips, save_dir, do_eval=do_eval)
- def evaluate(self,
- weight_path: str,
- batch_size: int=None,
- ips: bool=None,
- device: bool='gpu',
- amp: bool='OFF',
- num_workers: int=None,
- **kwargs) -> CompletedProcess:
- """evaluate self using specified weight
- Args:
- weight_path (str): the path of model weight file to be evaluated.
- batch_size (int, optional): the batch size value in evaluating. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- amp (str, optional): the AMP setting. Defaults to 'OFF'.
- num_workers (int, optional): the workers number in evaluating. Defaults to None.
- Returns:
- CompletedProcess: the result of evaluating subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- config.update_weights(weight_path)
- if batch_size is not None:
- config.update_batch_size(batch_size, 'eval')
- device_type, device_ids = self.runner.parse_device(device)
- if len(device_ids) > 1:
- raise ValueError(
- f"multi-{device_type} evaluation is not supported. Please use a single {device_type}."
- )
- config.update_device(device_type)
- if amp != 'OFF':
- # TODO: consider amp is O1 or O2 in ppdet
- cli_args.append(CLIArgument('--amp'))
- if num_workers is not None:
- config.update_num_workers(num_workers)
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- cp = self.runner.evaluate(config_path, cli_args, device, ips)
- return cp
- def predict(self,
- input_path: str,
- weight_path: str,
- device: str='gpu',
- save_dir: str=None,
- **kwargs) -> CompletedProcess:
- """predict using specified weight
- Args:
- weight_path (str): the path of model weight file used to predict.
- input_path (str): the path of image file to be predicted.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save predict output. Defaults to None.
- Returns:
- CompletedProcess: the result of predicting subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- input_path = abspath(input_path)
- if os.path.isfile(input_path):
- cli_args.append(CLIArgument('--infer_img', input_path))
- else:
- cli_args.append(CLIArgument('--infer_dir', input_path))
- if 'infer_list' in kwargs:
- infer_list = abspath(kwargs.get('infer_list'))
- cli_args.append(CLIArgument('--infer_list', infer_list))
- if 'visualize' in kwargs:
- cli_args.append(CLIArgument('--visualize', kwargs['visualize']))
- if 'save_results' in kwargs:
- cli_args.append(
- CLIArgument('--save_results', kwargs['save_results']))
- if 'save_threshold' in kwargs:
- cli_args.append(
- CLIArgument('--save_threshold', kwargs['save_threshold']))
- if 'rtn_im_file' in kwargs:
- cli_args.append(CLIArgument('--rtn_im_file', kwargs['rtn_im_file']))
- weight_path = abspath(weight_path)
- config.update_weights(weight_path)
- device_type, _ = self.runner.parse_device(device)
- config.update_device(device_type)
- if save_dir is not None:
- save_dir = abspath(save_dir)
- cli_args.append(CLIArgument('--output_dir', save_dir))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.predict(config_path, cli_args, device)
- def export(self, weight_path: str, save_dir: str,
- **kwargs) -> CompletedProcess:
- """export the dynamic model to static model
- Args:
- weight_path (str): the model weight file path that used to export.
- save_dir (str): the directory path to save export output.
- Returns:
- CompletedProcess: the result of exporting subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- config.update_weights(weight_path)
- save_dir = abspath(save_dir)
- cli_args.append(CLIArgument('--output_dir', save_dir))
- input_shape = kwargs.pop('input_shape', None)
- if input_shape is not None:
- cli_args.append(
- CLIArgument('-o',
- f"TestReader.inputs_def.image_shape={input_shape}"))
- use_trt = kwargs.pop('use_trt', None)
- if use_trt is not None:
- cli_args.append(CLIArgument('-o', f"trt={bool(use_trt)}"))
- exclude_nms = kwargs.pop('exclude_nms', None)
- if exclude_nms is not None:
- cli_args.append(
- CLIArgument('-o', f"exclude_nms={bool(exclude_nms)}"))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.export(config_path, cli_args, None)
- def infer(self,
- model_dir: str,
- input_path: str,
- device: str='gpu',
- save_dir: str=None,
- **kwargs):
- """predict image using infernece model
- Args:
- model_dir (str): the directory path of inference model files that would use to predict.
- input_path (str): the path of image that would be predict.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save output. Defaults to None.
- Returns:
- CompletedProcess: the result of infering subprocess execution.
- """
- model_dir = abspath(model_dir)
- input_path = abspath(input_path)
- if save_dir is not None:
- save_dir = abspath(save_dir)
- cli_args = []
- cli_args.append(CLIArgument('--model_dir', model_dir))
- cli_args.append(CLIArgument('--image_file', input_path))
- if save_dir is not None:
- cli_args.append(CLIArgument('--output_dir', save_dir))
- device_type, _ = self.runner.parse_device(device)
- cli_args.append(CLIArgument('--device', device_type))
- self._assert_empty_kwargs(kwargs)
- return self.runner.infer(cli_args, device)
- def compression(self,
- weight_path: str,
- batch_size: int=None,
- learning_rate: float=None,
- epochs_iters: int=None,
- device: str=None,
- use_vdl: bool=True,
- save_dir: str=None,
- **kwargs) -> CompletedProcess:
- """compression model
- Args:
- weight_path (str): the path to weight file of model.
- batch_size (int, optional): the batch size value of compression training. Defaults to None.
- learning_rate (float, optional): the learning rate value of compression training. Defaults to None.
- epochs_iters (int, optional): the epochs or iters of compression training. Defaults to None.
- device (str, optional): the device to run compression training. Defaults to 'gpu'.
- use_vdl (bool, optional): whether or not to use VisualDL. Defaults to True.
- save_dir (str, optional): the directory to save output. Defaults to None.
- Returns:
- CompletedProcess: the result of compression subprocess execution.
- """
- weight_path = abspath(weight_path)
- if save_dir is None:
- save_dir = self.config['save_dir']
- save_dir = abspath(save_dir)
- config = self.config.copy()
- cps_config = DetConfig(
- self.name,
- config_path=self.model_info['auto_compression_config_path'])
- train_cli_args = []
- export_cli_args = []
- cps_config.update_pretrained_weights(weight_path)
- if batch_size is not None:
- cps_config.update_batch_size(batch_size, 'train')
- if learning_rate is not None:
- cps_config.update_learning_rate(learning_rate)
- if epochs_iters is not None:
- cps_config.update_epochs(epochs_iters)
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- config.update_device(device_type)
- if save_dir is not None:
- save_dir = abspath(config.get_train_save_dir())
- else:
- save_dir = abspath(save_dir)
- cps_config.update_save_dir(save_dir)
- if use_vdl:
- train_cli_args.append(CLIArgument('--use_vdl', use_vdl))
- train_cli_args.append(CLIArgument('--vdl_log_dir', save_dir))
- export_cli_args.append(
- CLIArgument('--output_dir', os.path.join(save_dir, 'export')))
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- # TODO: refactor me
- cps_config_path = config_path[0:-4] + '_compression' + config_path[
- -4:]
- cps_config.dump(cps_config_path)
- train_cli_args.append(CLIArgument('--slim_config', cps_config_path))
- export_cli_args.append(
- CLIArgument('--slim_config', cps_config_path))
- self._assert_empty_kwargs(kwargs)
- self.runner.compression(config_path, train_cli_args,
- export_cli_args, device, save_dir)
|