faster_rcnn_r50_fpn.py 2.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压昆虫检测数据集
  4. dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  5. pdx.utils.download_and_decompress(dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose([
  9. T.RandomResizeByShort(
  10. short_sizes=[640, 672, 704, 736, 768, 800],
  11. max_size=1333,
  12. interp='CUBIC'), T.RandomHorizontalFlip(), T.Normalize(
  13. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  14. ])
  15. eval_transforms = T.Compose([
  16. T.ResizeByShort(
  17. short_size=800, max_size=1333, interp='CUBIC'), T.Normalize(
  18. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  19. ])
  20. # 定义训练和验证所用的数据集
  21. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
  22. train_dataset = pdx.datasets.VOCDetection(
  23. data_dir='insect_det',
  24. file_list='insect_det/train_list.txt',
  25. label_list='insect_det/labels.txt',
  26. transforms=train_transforms,
  27. shuffle=True)
  28. eval_dataset = pdx.datasets.VOCDetection(
  29. data_dir='insect_det',
  30. file_list='insect_det/val_list.txt',
  31. label_list='insect_det/labels.txt',
  32. transforms=eval_transforms,
  33. shuffle=False)
  34. # 初始化模型,并进行训练
  35. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
  36. num_classes = len(train_dataset.labels)
  37. model = pdx.det.FasterRCNN(
  38. num_classes=num_classes, backbone='ResNet50', with_fpn=True)
  39. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/detection.md
  40. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md
  41. model.train(
  42. num_epochs=12,
  43. train_dataset=train_dataset,
  44. train_batch_size=2,
  45. eval_dataset=eval_dataset,
  46. learning_rate=0.0025,
  47. lr_decay_epochs=[8, 11],
  48. warmup_steps=500,
  49. warmup_start_lr=0.00025,
  50. save_dir='output/faster_rcnn_r50_fpn',
  51. use_vdl=True)