model.py 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from abc import abstractmethod
  15. from copy import deepcopy
  16. from .inference import create_predictor, PaddlePredictorOption
  17. from .modules import (
  18. build_dataset_checker,
  19. build_trainer,
  20. build_evaluater,
  21. build_exportor,
  22. )
  23. # TODO(gaotingquan): support _ModelBasedConfig
  24. def create_model(model=None, *args, **kwargs):
  25. return _ModelBasedInference(model, *args, **kwargs)
  26. class _BaseModel:
  27. def check_dataset(self, *args, **kwargs):
  28. raise Exception("check_dataset is not supported!")
  29. def train(self, *args, **kwargs):
  30. raise Exception("train is not supported!")
  31. def evaluate(self, *args, **kwargs):
  32. raise Exception("evaluate is not supported!")
  33. def export(self, *args, **kwargs):
  34. raise Exception("export is not supported!")
  35. def predict(self, *args, **kwargs):
  36. raise Exception("predict is not supported!")
  37. def set_predict(self, *args, **kwargs):
  38. raise Exception("set_predict is not supported!")
  39. def __call__(self, *args, **kwargs):
  40. yield from self.predict(*args, **kwargs)
  41. class _ModelBasedInference(_BaseModel):
  42. def __init__(self, *args, **kwargs):
  43. self._predictor = create_predictor(*args, **kwargs)
  44. def predict(self, *args, **kwargs):
  45. yield from self._predictor(*args, **kwargs)
  46. def set_predict(self, **kwargs):
  47. self._predictor.set_predict(**kwargs)
  48. class _ModelBasedConfig(_BaseModel):
  49. def __init__(self, config=None, *args, **kwargs):
  50. super().__init__()
  51. self._config = config
  52. self._model_name = config.Global.model
  53. def _build_predictor(self):
  54. predict_kwargs = deepcopy(self._config.Predict)
  55. model_dir = predict_kwargs.pop("model_dir", None)
  56. # if model_dir is None, using official
  57. model = self._model_name if model_dir is None else model_dir
  58. device = self._config.Global.get("device")
  59. kernel_option = predict_kwargs.pop("kernel_option", {})
  60. kernel_option.update({"device": device})
  61. pp_option = PaddlePredictorOption(**kernel_option)
  62. predictor = create_predictor(model, pp_option=pp_option)
  63. assert "input" in predict_kwargs
  64. return predict_kwargs, predictor
  65. def check_dataset(self):
  66. dataset_checker = build_dataset_checker(self._config)
  67. return dataset_checker.check()
  68. def train(self):
  69. trainer = build_trainer(self._config)
  70. trainer.train()
  71. def evaluate(self):
  72. evaluator = build_evaluater(self._config)
  73. return evaluator.evaluate()
  74. def export(self):
  75. exportor = build_exportor(self._config)
  76. return exportor.export()
  77. def predict(self):
  78. predict_kwargs, predictor = self._build_predictor()
  79. yield from predictor(**predict_kwargs)