model.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import json
  16. from ...base import BaseModel
  17. from ...base.utils.arg import CLIArgument
  18. from ...base.utils.subprocess import CompletedProcess
  19. from ....utils.device import parse_device
  20. from ....utils.misc import abspath
  21. from ....utils import logging
  22. from .config import DetConfig
  23. from .official_categories import official_categories
  24. class DetModel(BaseModel):
  25. """Object Detection Model"""
  26. def train(
  27. self,
  28. batch_size: int = None,
  29. learning_rate: float = None,
  30. epochs_iters: int = None,
  31. ips: str = None,
  32. device: str = "gpu",
  33. resume_path: str = None,
  34. dy2st: bool = False,
  35. amp: str = "OFF",
  36. num_workers: int = None,
  37. use_vdl: bool = True,
  38. save_dir: str = None,
  39. **kwargs,
  40. ) -> CompletedProcess:
  41. """train self
  42. Args:
  43. batch_size (int, optional): the train batch size value. Defaults to None.
  44. learning_rate (float, optional): the train learning rate value. Defaults to None.
  45. epochs_iters (int, optional): the train epochs value. Defaults to None.
  46. ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
  47. device (str, optional): the running device. Defaults to 'gpu'.
  48. resume_path (str, optional): the checkpoint file path to resume training. Train from scratch if it is set
  49. to None. Defaults to None.
  50. dy2st (bool, optional): Enable dynamic to static. Defaults to False.
  51. amp (str, optional): the amp settings. Defaults to 'OFF'.
  52. num_workers (int, optional): the workers number. Defaults to None.
  53. use_vdl (bool, optional): enable VisualDL. Defaults to True.
  54. save_dir (str, optional): the directory path to save train output. Defaults to None.
  55. Returns:
  56. CompletedProcess: the result of training subprocess execution.
  57. """
  58. config = self.config.copy()
  59. cli_args = []
  60. if batch_size is not None:
  61. config.update_batch_size(batch_size, "train")
  62. if learning_rate is not None:
  63. config.update_learning_rate(learning_rate)
  64. if epochs_iters is not None:
  65. config.update_epochs(epochs_iters)
  66. config.update_cossch_epoch(epochs_iters)
  67. device_type, _ = parse_device(device)
  68. config.update_device(device_type)
  69. if resume_path is not None:
  70. assert resume_path.endswith(
  71. ".pdparams"
  72. ), "resume_path should be endswith .pdparam"
  73. resume_dir = resume_path[0:-9]
  74. cli_args.append(CLIArgument("--resume", resume_dir))
  75. if dy2st:
  76. cli_args.append(CLIArgument("--to_static"))
  77. if num_workers is not None:
  78. config.update_num_workers(num_workers)
  79. if save_dir is None:
  80. save_dir = abspath(config.get_train_save_dir())
  81. else:
  82. save_dir = abspath(save_dir)
  83. config.update_save_dir(save_dir)
  84. if use_vdl:
  85. cli_args.append(CLIArgument("--use_vdl", use_vdl))
  86. cli_args.append(CLIArgument("--vdl_log_dir", save_dir))
  87. do_eval = kwargs.pop("do_eval", True)
  88. enable_ce = kwargs.pop("enable_ce", None)
  89. profile = kwargs.pop("profile", None)
  90. if profile is not None:
  91. cli_args.append(CLIArgument("--profiler_options", profile))
  92. # Benchmarking mode settings
  93. benchmark = kwargs.pop("benchmark", None)
  94. if benchmark is not None:
  95. envs = benchmark.get("env", None)
  96. amp = benchmark.get("amp", None)
  97. do_eval = benchmark.get("do_eval", False)
  98. num_workers = benchmark.get("num_workers", None)
  99. config.update_log_ranks(device)
  100. config.update_shuffle(benchmark.get("shuffle", False))
  101. config.update_shared_memory(benchmark.get("shared_memory", True))
  102. config.update_print_mem_info(benchmark.get("print_mem_info", True))
  103. if num_workers is not None:
  104. config.update_num_workers(num_workers)
  105. if amp == "O1":
  106. # TODO: ppdet only support ampO1
  107. cli_args.append(CLIArgument("--amp"))
  108. if envs is not None:
  109. for env_name, env_value in envs.items():
  110. os.environ[env_name] = str(env_value)
  111. # set seed to 0 for benchmark mode by enable_ce
  112. cli_args.append(CLIArgument("--enable_ce", True))
  113. else:
  114. if amp != "OFF" and amp is not None:
  115. # TODO: consider amp is O1 or O2 in ppdet
  116. cli_args.append(CLIArgument("--amp"))
  117. if enable_ce is not None:
  118. cli_args.append(CLIArgument("--enable_ce", enable_ce))
  119. # PDX related settings
  120. config.update({"uniform_output_enabled": True})
  121. config.update({"pdx_model_name": self.name})
  122. hpi_config_path = self.model_info.get("hpi_config_path", None)
  123. if hpi_config_path:
  124. hpi_config_path = hpi_config_path.as_posix()
  125. config.update({"hpi_config_path": hpi_config_path})
  126. self._assert_empty_kwargs(kwargs)
  127. with self._create_new_config_file() as config_path:
  128. config.dump(config_path)
  129. return self.runner.train(
  130. config_path, cli_args, device, ips, save_dir, do_eval=do_eval
  131. )
  132. def evaluate(
  133. self,
  134. weight_path: str,
  135. batch_size: int = None,
  136. ips: bool = None,
  137. device: bool = "gpu",
  138. amp: bool = "OFF",
  139. num_workers: int = None,
  140. **kwargs,
  141. ) -> CompletedProcess:
  142. """evaluate self using specified weight
  143. Args:
  144. weight_path (str): the path of model weight file to be evaluated.
  145. batch_size (int, optional): the batch size value in evaluating. Defaults to None.
  146. ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
  147. device (str, optional): the running device. Defaults to 'gpu'.
  148. amp (str, optional): the AMP setting. Defaults to 'OFF'.
  149. num_workers (int, optional): the workers number in evaluating. Defaults to None.
  150. Returns:
  151. CompletedProcess: the result of evaluating subprocess execution.
  152. """
  153. config = self.config.copy()
  154. cli_args = []
  155. weight_path = abspath(weight_path)
  156. config.update_weights(weight_path)
  157. if batch_size is not None:
  158. config.update_batch_size(batch_size, "eval")
  159. device_type, device_ids = parse_device(device)
  160. if len(device_ids) > 1:
  161. raise ValueError(
  162. f"multi-{device_type} evaluation is not supported. Please use a single {device_type}."
  163. )
  164. config.update_device(device_type)
  165. if amp != "OFF":
  166. # TODO: consider amp is O1 or O2 in ppdet
  167. cli_args.append(CLIArgument("--amp"))
  168. if num_workers is not None:
  169. config.update_num_workers(num_workers)
  170. self._assert_empty_kwargs(kwargs)
  171. with self._create_new_config_file() as config_path:
  172. config.dump(config_path)
  173. cp = self.runner.evaluate(config_path, cli_args, device, ips)
  174. return cp
  175. def predict(
  176. self,
  177. input_path: str,
  178. weight_path: str,
  179. device: str = "gpu",
  180. save_dir: str = None,
  181. **kwargs,
  182. ) -> CompletedProcess:
  183. """predict using specified weight
  184. Args:
  185. weight_path (str): the path of model weight file used to predict.
  186. input_path (str): the path of image file to be predicted.
  187. device (str, optional): the running device. Defaults to 'gpu'.
  188. save_dir (str, optional): the directory path to save predict output. Defaults to None.
  189. Returns:
  190. CompletedProcess: the result of predicting subprocess execution.
  191. """
  192. config = self.config.copy()
  193. cli_args = []
  194. input_path = abspath(input_path)
  195. if os.path.isfile(input_path):
  196. cli_args.append(CLIArgument("--infer_img", input_path))
  197. else:
  198. cli_args.append(CLIArgument("--infer_dir", input_path))
  199. if "infer_list" in kwargs:
  200. infer_list = abspath(kwargs.get("infer_list"))
  201. cli_args.append(CLIArgument("--infer_list", infer_list))
  202. if "visualize" in kwargs:
  203. cli_args.append(CLIArgument("--visualize", kwargs["visualize"]))
  204. if "save_results" in kwargs:
  205. cli_args.append(CLIArgument("--save_results", kwargs["save_results"]))
  206. if "save_threshold" in kwargs:
  207. cli_args.append(CLIArgument("--save_threshold", kwargs["save_threshold"]))
  208. if "rtn_im_file" in kwargs:
  209. cli_args.append(CLIArgument("--rtn_im_file", kwargs["rtn_im_file"]))
  210. weight_path = abspath(weight_path)
  211. config.update_weights(weight_path)
  212. device_type, _ = parse_device(device)
  213. config.update_device(device_type)
  214. if save_dir is not None:
  215. save_dir = abspath(save_dir)
  216. cli_args.append(CLIArgument("--output_dir", save_dir))
  217. self._assert_empty_kwargs(kwargs)
  218. with self._create_new_config_file() as config_path:
  219. config.dump(config_path)
  220. return self.runner.predict(config_path, cli_args, device)
  221. def export(self, weight_path: str, save_dir: str, **kwargs) -> CompletedProcess:
  222. """export the dynamic model to static model
  223. Args:
  224. weight_path (str): the model weight file path that used to export.
  225. save_dir (str): the directory path to save export output.
  226. Returns:
  227. CompletedProcess: the result of exporting subprocess execution.
  228. """
  229. config = self.config.copy()
  230. cli_args = []
  231. if not weight_path.startswith("http"):
  232. weight_path = abspath(weight_path)
  233. config.update_weights(weight_path)
  234. save_dir = abspath(save_dir)
  235. cli_args.append(CLIArgument("--output_dir", save_dir))
  236. input_shape = kwargs.pop("input_shape", None)
  237. if input_shape is not None:
  238. cli_args.append(
  239. CLIArgument("-o", f"TestReader.inputs_def.image_shape={input_shape}")
  240. )
  241. use_trt = kwargs.pop("use_trt", None)
  242. if use_trt is not None:
  243. cli_args.append(CLIArgument("-o", f"trt={bool(use_trt)}"))
  244. exclude_nms = kwargs.pop("exclude_nms", None)
  245. if exclude_nms is not None:
  246. cli_args.append(CLIArgument("-o", f"exclude_nms={bool(exclude_nms)}"))
  247. # PDX related settings
  248. config.update({"pdx_model_name": self.name})
  249. hpi_config_path = self.model_info.get("hpi_config_path", None)
  250. if hpi_config_path:
  251. hpi_config_path = hpi_config_path.as_posix()
  252. config.update({"hpi_config_path": hpi_config_path})
  253. if self.name in official_categories.keys():
  254. anno_val_file = abspath(
  255. os.path.join(
  256. config.TestDataset["dataset_dir"], config.TestDataset["anno_path"]
  257. )
  258. )
  259. if anno_val_file == None or (not os.path.isfile(anno_val_file)):
  260. categories = official_categories[self.name]
  261. temp_anno = {"images": [], "annotations": [], "categories": categories}
  262. with self._create_new_val_json_file() as anno_file:
  263. json.dump(temp_anno, open(anno_file, "w"))
  264. config.update(
  265. {"TestDataset": {"dataset_dir": "", "anno_path": anno_file}}
  266. )
  267. logging.warning(
  268. f"{self.name} does not have validate annotations, use {anno_file} default instead."
  269. )
  270. self._assert_empty_kwargs(kwargs)
  271. with self._create_new_config_file() as config_path:
  272. config.dump(config_path)
  273. return self.runner.export(config_path, cli_args, None)
  274. self._assert_empty_kwargs(kwargs)
  275. with self._create_new_config_file() as config_path:
  276. config.dump(config_path)
  277. return self.runner.export(config_path, cli_args, None)
  278. def infer(
  279. self,
  280. model_dir: str,
  281. input_path: str,
  282. device: str = "gpu",
  283. save_dir: str = None,
  284. **kwargs,
  285. ):
  286. """predict image using infernece model
  287. Args:
  288. model_dir (str): the directory path of inference model files that would use to predict.
  289. input_path (str): the path of image that would be predict.
  290. device (str, optional): the running device. Defaults to 'gpu'.
  291. save_dir (str, optional): the directory path to save output. Defaults to None.
  292. Returns:
  293. CompletedProcess: the result of infering subprocess execution.
  294. """
  295. model_dir = abspath(model_dir)
  296. input_path = abspath(input_path)
  297. if save_dir is not None:
  298. save_dir = abspath(save_dir)
  299. cli_args = []
  300. cli_args.append(CLIArgument("--model_dir", model_dir))
  301. cli_args.append(CLIArgument("--image_file", input_path))
  302. if save_dir is not None:
  303. cli_args.append(CLIArgument("--output_dir", save_dir))
  304. device_type, _ = parse_device(device)
  305. cli_args.append(CLIArgument("--device", device_type))
  306. self._assert_empty_kwargs(kwargs)
  307. return self.runner.infer(cli_args, device)
  308. def compression(
  309. self,
  310. weight_path: str,
  311. batch_size: int = None,
  312. learning_rate: float = None,
  313. epochs_iters: int = None,
  314. device: str = None,
  315. use_vdl: bool = True,
  316. save_dir: str = None,
  317. **kwargs,
  318. ) -> CompletedProcess:
  319. """compression model
  320. Args:
  321. weight_path (str): the path to weight file of model.
  322. batch_size (int, optional): the batch size value of compression training. Defaults to None.
  323. learning_rate (float, optional): the learning rate value of compression training. Defaults to None.
  324. epochs_iters (int, optional): the epochs or iters of compression training. Defaults to None.
  325. device (str, optional): the device to run compression training. Defaults to 'gpu'.
  326. use_vdl (bool, optional): whether or not to use VisualDL. Defaults to True.
  327. save_dir (str, optional): the directory to save output. Defaults to None.
  328. Returns:
  329. CompletedProcess: the result of compression subprocess execution.
  330. """
  331. weight_path = abspath(weight_path)
  332. if save_dir is None:
  333. save_dir = self.config["save_dir"]
  334. save_dir = abspath(save_dir)
  335. config = self.config.copy()
  336. cps_config = DetConfig(
  337. self.name, config_path=self.model_info["auto_compression_config_path"]
  338. )
  339. train_cli_args = []
  340. export_cli_args = []
  341. cps_config.update_pretrained_weights(weight_path)
  342. if batch_size is not None:
  343. cps_config.update_batch_size(batch_size, "train")
  344. if learning_rate is not None:
  345. cps_config.update_learning_rate(learning_rate)
  346. if epochs_iters is not None:
  347. cps_config.update_epochs(epochs_iters)
  348. if device is not None:
  349. device_type, _ = parse_device(device)
  350. config.update_device(device_type)
  351. if save_dir is not None:
  352. save_dir = abspath(config.get_train_save_dir())
  353. else:
  354. save_dir = abspath(save_dir)
  355. cps_config.update_save_dir(save_dir)
  356. if use_vdl:
  357. train_cli_args.append(CLIArgument("--use_vdl", use_vdl))
  358. train_cli_args.append(CLIArgument("--vdl_log_dir", save_dir))
  359. export_cli_args.append(
  360. CLIArgument("--output_dir", os.path.join(save_dir, "export"))
  361. )
  362. with self._create_new_config_file() as config_path:
  363. config.dump(config_path)
  364. # TODO: refactor me
  365. cps_config_path = config_path[0:-4] + "_compression" + config_path[-4:]
  366. cps_config.dump(cps_config_path)
  367. train_cli_args.append(CLIArgument("--slim_config", cps_config_path))
  368. export_cli_args.append(CLIArgument("--slim_config", cps_config_path))
  369. self._assert_empty_kwargs(kwargs)
  370. self.runner.compression(
  371. config_path, train_cli_args, export_cli_args, device, save_dir
  372. )