| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import json
- from ...base import BaseModel
- from ...base.utils.arg import CLIArgument
- from ...base.utils.subprocess import CompletedProcess
- from ....utils.device import parse_device
- from ....utils.misc import abspath
- from ....utils import logging
- from .config import DetConfig
- from .official_categories import official_categories
- class DetModel(BaseModel):
- """Object Detection Model"""
- def train(
- self,
- batch_size: int = None,
- learning_rate: float = None,
- epochs_iters: int = None,
- ips: str = None,
- device: str = "gpu",
- resume_path: str = None,
- dy2st: bool = False,
- amp: str = "OFF",
- num_workers: int = None,
- use_vdl: bool = True,
- save_dir: str = None,
- **kwargs,
- ) -> CompletedProcess:
- """train self
- Args:
- batch_size (int, optional): the train batch size value. Defaults to None.
- learning_rate (float, optional): the train learning rate value. Defaults to None.
- epochs_iters (int, optional): the train epochs value. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- resume_path (str, optional): the checkpoint file path to resume training. Train from scratch if it is set
- to None. Defaults to None.
- dy2st (bool, optional): Enable dynamic to static. Defaults to False.
- amp (str, optional): the amp settings. Defaults to 'OFF'.
- num_workers (int, optional): the workers number. Defaults to None.
- use_vdl (bool, optional): enable VisualDL. Defaults to True.
- save_dir (str, optional): the directory path to save train output. Defaults to None.
- Returns:
- CompletedProcess: the result of training subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- if batch_size is not None:
- config.update_batch_size(batch_size, "train")
- if learning_rate is not None:
- config.update_learning_rate(learning_rate)
- if epochs_iters is not None:
- config.update_epochs(epochs_iters)
- config.update_cossch_epoch(epochs_iters)
- device_type, _ = parse_device(device)
- config.update_device(device_type)
- if resume_path is not None:
- assert resume_path.endswith(
- ".pdparams"
- ), "resume_path should be endswith .pdparam"
- resume_dir = resume_path[0:-9]
- cli_args.append(CLIArgument("--resume", resume_dir))
- if dy2st:
- cli_args.append(CLIArgument("--to_static"))
- if num_workers is not None:
- config.update_num_workers(num_workers)
- if save_dir is None:
- save_dir = abspath(config.get_train_save_dir())
- else:
- save_dir = abspath(save_dir)
- config.update_save_dir(save_dir)
- if use_vdl:
- cli_args.append(CLIArgument("--use_vdl", use_vdl))
- cli_args.append(CLIArgument("--vdl_log_dir", save_dir))
- do_eval = kwargs.pop("do_eval", True)
- enable_ce = kwargs.pop("enable_ce", None)
- profile = kwargs.pop("profile", None)
- if profile is not None:
- cli_args.append(CLIArgument("--profiler_options", profile))
- # Benchmarking mode settings
- benchmark = kwargs.pop("benchmark", None)
- if benchmark is not None:
- envs = benchmark.get("env", None)
- amp = benchmark.get("amp", None)
- do_eval = benchmark.get("do_eval", False)
- num_workers = benchmark.get("num_workers", None)
- config.update_log_ranks(device)
- config.update_shuffle(benchmark.get("shuffle", False))
- config.update_shared_memory(benchmark.get("shared_memory", True))
- config.update_print_mem_info(benchmark.get("print_mem_info", True))
- if num_workers is not None:
- config.update_num_workers(num_workers)
- if amp == "O1":
- # TODO: ppdet only support ampO1
- cli_args.append(CLIArgument("--amp"))
- if envs is not None:
- for env_name, env_value in envs.items():
- os.environ[env_name] = str(env_value)
- # set seed to 0 for benchmark mode by enable_ce
- cli_args.append(CLIArgument("--enable_ce", True))
- else:
- if amp != "OFF" and amp is not None:
- # TODO: consider amp is O1 or O2 in ppdet
- cli_args.append(CLIArgument("--amp"))
- if enable_ce is not None:
- cli_args.append(CLIArgument("--enable_ce", enable_ce))
- # PDX related settings
- config.update({"uniform_output_enabled": True})
- config.update({"pdx_model_name": self.name})
- hpi_config_path = self.model_info.get("hpi_config_path", None)
- if hpi_config_path:
- hpi_config_path = hpi_config_path.as_posix()
- config.update({"hpi_config_path": hpi_config_path})
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.train(
- config_path, cli_args, device, ips, save_dir, do_eval=do_eval
- )
- def evaluate(
- self,
- weight_path: str,
- batch_size: int = None,
- ips: bool = None,
- device: bool = "gpu",
- amp: bool = "OFF",
- num_workers: int = None,
- **kwargs,
- ) -> CompletedProcess:
- """evaluate self using specified weight
- Args:
- weight_path (str): the path of model weight file to be evaluated.
- batch_size (int, optional): the batch size value in evaluating. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- amp (str, optional): the AMP setting. Defaults to 'OFF'.
- num_workers (int, optional): the workers number in evaluating. Defaults to None.
- Returns:
- CompletedProcess: the result of evaluating subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- config.update_weights(weight_path)
- if batch_size is not None:
- config.update_batch_size(batch_size, "eval")
- device_type, device_ids = parse_device(device)
- if len(device_ids) > 1:
- raise ValueError(
- f"multi-{device_type} evaluation is not supported. Please use a single {device_type}."
- )
- config.update_device(device_type)
- if amp != "OFF":
- # TODO: consider amp is O1 or O2 in ppdet
- cli_args.append(CLIArgument("--amp"))
- if num_workers is not None:
- config.update_num_workers(num_workers)
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- cp = self.runner.evaluate(config_path, cli_args, device, ips)
- return cp
- def predict(
- self,
- input_path: str,
- weight_path: str,
- device: str = "gpu",
- save_dir: str = None,
- **kwargs,
- ) -> CompletedProcess:
- """predict using specified weight
- Args:
- weight_path (str): the path of model weight file used to predict.
- input_path (str): the path of image file to be predicted.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save predict output. Defaults to None.
- Returns:
- CompletedProcess: the result of predicting subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- input_path = abspath(input_path)
- if os.path.isfile(input_path):
- cli_args.append(CLIArgument("--infer_img", input_path))
- else:
- cli_args.append(CLIArgument("--infer_dir", input_path))
- if "infer_list" in kwargs:
- infer_list = abspath(kwargs.get("infer_list"))
- cli_args.append(CLIArgument("--infer_list", infer_list))
- if "visualize" in kwargs:
- cli_args.append(CLIArgument("--visualize", kwargs["visualize"]))
- if "save_results" in kwargs:
- cli_args.append(CLIArgument("--save_results", kwargs["save_results"]))
- if "save_threshold" in kwargs:
- cli_args.append(CLIArgument("--save_threshold", kwargs["save_threshold"]))
- if "rtn_im_file" in kwargs:
- cli_args.append(CLIArgument("--rtn_im_file", kwargs["rtn_im_file"]))
- weight_path = abspath(weight_path)
- config.update_weights(weight_path)
- device_type, _ = parse_device(device)
- config.update_device(device_type)
- if save_dir is not None:
- save_dir = abspath(save_dir)
- cli_args.append(CLIArgument("--output_dir", save_dir))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.predict(config_path, cli_args, device)
- def export(self, weight_path: str, save_dir: str, **kwargs) -> CompletedProcess:
- """export the dynamic model to static model
- Args:
- weight_path (str): the model weight file path that used to export.
- save_dir (str): the directory path to save export output.
- Returns:
- CompletedProcess: the result of exporting subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- if not weight_path.startswith("http"):
- weight_path = abspath(weight_path)
- config.update_weights(weight_path)
- save_dir = abspath(save_dir)
- cli_args.append(CLIArgument("--output_dir", save_dir))
- input_shape = kwargs.pop("input_shape", None)
- if input_shape is not None:
- cli_args.append(
- CLIArgument("-o", f"TestReader.inputs_def.image_shape={input_shape}")
- )
- use_trt = kwargs.pop("use_trt", None)
- if use_trt is not None:
- cli_args.append(CLIArgument("-o", f"trt={bool(use_trt)}"))
- exclude_nms = kwargs.pop("exclude_nms", None)
- if exclude_nms is not None:
- cli_args.append(CLIArgument("-o", f"exclude_nms={bool(exclude_nms)}"))
- # PDX related settings
- config.update({"pdx_model_name": self.name})
- hpi_config_path = self.model_info.get("hpi_config_path", None)
- if hpi_config_path:
- hpi_config_path = hpi_config_path.as_posix()
- config.update({"hpi_config_path": hpi_config_path})
- if self.name in official_categories.keys():
- anno_val_file = abspath(
- os.path.join(
- config.TestDataset["dataset_dir"], config.TestDataset["anno_path"]
- )
- )
- if anno_val_file == None or (not os.path.isfile(anno_val_file)):
- categories = official_categories[self.name]
- temp_anno = {"images": [], "annotations": [], "categories": categories}
- with self._create_new_val_json_file() as anno_file:
- json.dump(temp_anno, open(anno_file, "w"))
- config.update(
- {"TestDataset": {"dataset_dir": "", "anno_path": anno_file}}
- )
- logging.warning(
- f"{self.name} does not have validate annotations, use {anno_file} default instead."
- )
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.export(config_path, cli_args, None)
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.export(config_path, cli_args, None)
- def infer(
- self,
- model_dir: str,
- input_path: str,
- device: str = "gpu",
- save_dir: str = None,
- **kwargs,
- ):
- """predict image using infernece model
- Args:
- model_dir (str): the directory path of inference model files that would use to predict.
- input_path (str): the path of image that would be predict.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save output. Defaults to None.
- Returns:
- CompletedProcess: the result of infering subprocess execution.
- """
- model_dir = abspath(model_dir)
- input_path = abspath(input_path)
- if save_dir is not None:
- save_dir = abspath(save_dir)
- cli_args = []
- cli_args.append(CLIArgument("--model_dir", model_dir))
- cli_args.append(CLIArgument("--image_file", input_path))
- if save_dir is not None:
- cli_args.append(CLIArgument("--output_dir", save_dir))
- device_type, _ = parse_device(device)
- cli_args.append(CLIArgument("--device", device_type))
- self._assert_empty_kwargs(kwargs)
- return self.runner.infer(cli_args, device)
- def compression(
- self,
- weight_path: str,
- batch_size: int = None,
- learning_rate: float = None,
- epochs_iters: int = None,
- device: str = None,
- use_vdl: bool = True,
- save_dir: str = None,
- **kwargs,
- ) -> CompletedProcess:
- """compression model
- Args:
- weight_path (str): the path to weight file of model.
- batch_size (int, optional): the batch size value of compression training. Defaults to None.
- learning_rate (float, optional): the learning rate value of compression training. Defaults to None.
- epochs_iters (int, optional): the epochs or iters of compression training. Defaults to None.
- device (str, optional): the device to run compression training. Defaults to 'gpu'.
- use_vdl (bool, optional): whether or not to use VisualDL. Defaults to True.
- save_dir (str, optional): the directory to save output. Defaults to None.
- Returns:
- CompletedProcess: the result of compression subprocess execution.
- """
- weight_path = abspath(weight_path)
- if save_dir is None:
- save_dir = self.config["save_dir"]
- save_dir = abspath(save_dir)
- config = self.config.copy()
- cps_config = DetConfig(
- self.name, config_path=self.model_info["auto_compression_config_path"]
- )
- train_cli_args = []
- export_cli_args = []
- cps_config.update_pretrained_weights(weight_path)
- if batch_size is not None:
- cps_config.update_batch_size(batch_size, "train")
- if learning_rate is not None:
- cps_config.update_learning_rate(learning_rate)
- if epochs_iters is not None:
- cps_config.update_epochs(epochs_iters)
- if device is not None:
- device_type, _ = parse_device(device)
- config.update_device(device_type)
- if save_dir is not None:
- save_dir = abspath(config.get_train_save_dir())
- else:
- save_dir = abspath(save_dir)
- cps_config.update_save_dir(save_dir)
- if use_vdl:
- train_cli_args.append(CLIArgument("--use_vdl", use_vdl))
- train_cli_args.append(CLIArgument("--vdl_log_dir", save_dir))
- export_cli_args.append(
- CLIArgument("--output_dir", os.path.join(save_dir, "export"))
- )
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- # TODO: refactor me
- cps_config_path = config_path[0:-4] + "_compression" + config_path[-4:]
- cps_config.dump(cps_config_path)
- train_cli_args.append(CLIArgument("--slim_config", cps_config_path))
- export_cli_args.append(CLIArgument("--slim_config", cps_config_path))
- self._assert_empty_kwargs(kwargs)
- self.runner.compression(
- config_path, train_cli_args, export_cli_args, device, save_dir
- )
|