unet_qat.py 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压视盘分割数据集
  4. optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
  5. pdx.utils.download_and_decompress(optic_dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
  8. train_transforms = T.Compose([
  9. T.Resize(target_size=512),
  10. T.RandomHorizontalFlip(),
  11. T.Normalize(
  12. mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
  13. ])
  14. eval_transforms = T.Compose([
  15. T.Resize(target_size=512),
  16. T.Normalize(
  17. mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
  18. ])
  19. # 定义训练和验证所用的数据集
  20. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/seg_dataset.py#L22
  21. train_dataset = pdx.datasets.SegDataset(
  22. data_dir='optic_disc_seg',
  23. file_list='optic_disc_seg/train_list.txt',
  24. label_list='optic_disc_seg/labels.txt',
  25. transforms=train_transforms,
  26. shuffle=True)
  27. eval_dataset = pdx.datasets.SegDataset(
  28. data_dir='optic_disc_seg',
  29. file_list='optic_disc_seg/val_list.txt',
  30. label_list='optic_disc_seg/labels.txt',
  31. transforms=eval_transforms,
  32. shuffle=False)
  33. # 加载模型
  34. model = pdx.load_model('output/unet/best_model')
  35. # 在线量化
  36. model.quant_aware_train(
  37. num_epochs=5,
  38. train_dataset=train_dataset,
  39. train_batch_size=4,
  40. eval_dataset=eval_dataset,
  41. learning_rate=0.001,
  42. save_dir='output/unet/quant')