object_detection.py 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.object_detection.model_list import MODELS
  17. from ..components import *
  18. from ..results import DetResult
  19. from ..utils.process_hook import batchable_method
  20. from .base import CVPredictor
  21. class DetPredictor(CVPredictor):
  22. entities = MODELS
  23. _FUNC_MAP = {}
  24. register = FuncRegister(_FUNC_MAP)
  25. def _build_components(self):
  26. self._add_component(ReadImage(format="RGB"))
  27. for cfg in self.config["Preprocess"]:
  28. tf_key = cfg["type"]
  29. func = self._FUNC_MAP.get(tf_key)
  30. cfg.pop("type")
  31. args = cfg
  32. op = func(self, **args) if args else func(self)
  33. self._add_component(op)
  34. predictor = ImageDetPredictor(
  35. model_dir=self.model_dir,
  36. model_prefix=self.MODEL_FILE_PREFIX,
  37. option=self.pp_option,
  38. )
  39. if self.model_name in [
  40. "RT-DETR-R18",
  41. "RT-DETR-R50",
  42. "RT-DETR-L",
  43. "RT-DETR-H",
  44. "RT-DETR-X",
  45. ]:
  46. predictor.set_inputs(
  47. {
  48. "img": "img",
  49. "scale_factors": "scale_factors",
  50. "img_size": "img_size",
  51. }
  52. )
  53. self._add_component(
  54. [
  55. ("Predictor", predictor),
  56. DetPostProcess(
  57. threshold=self.config["draw_threshold"],
  58. labels=self.config["label_list"],
  59. ),
  60. ]
  61. )
  62. @register("Resize")
  63. def build_resize(self, target_size, keep_ratio=False, interp=2):
  64. assert target_size
  65. if isinstance(interp, int):
  66. interp = {
  67. 0: "NEAREST",
  68. 1: "LINEAR",
  69. 2: "CUBIC",
  70. 3: "AREA",
  71. 4: "LANCZOS4",
  72. }[interp]
  73. op = Resize(target_size=target_size, keep_ratio=keep_ratio, interp=interp)
  74. return op
  75. @register("NormalizeImage")
  76. def build_normalize(
  77. self,
  78. norm_type=None,
  79. mean=[0.485, 0.456, 0.406],
  80. std=[0.229, 0.224, 0.225],
  81. is_scale=None,
  82. ):
  83. if is_scale:
  84. scale = 1.0 / 255.0
  85. else:
  86. scale = 1
  87. if not norm_type or norm_type == "none":
  88. norm_type = "mean_std"
  89. if norm_type != "mean_std":
  90. mean = 0
  91. std = 1
  92. return Normalize(mean=mean, std=std)
  93. @register("Permute")
  94. def build_to_chw(self):
  95. return ToCHWImage()
  96. def _pack_res(self, single):
  97. keys = ["img_path", "boxes"]
  98. return DetResult({key: single[key] for key in keys})