| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from ...utils.func_register import FuncRegister
- from ...modules.semantic_segmentation.model_list import MODELS
- from ..components import *
- from ..results import SegResult
- from ..utils.process_hook import batchable_method
- from .base import CVPredictor
- class SegPredictor(CVPredictor):
- entities = MODELS
- _FUNC_MAP = {}
- register = FuncRegister(_FUNC_MAP)
- def _build_components(self):
- self._add_component(ReadImage(format="RGB"))
- self._add_component(ToCHWImage())
- for cfg in self.config["Deploy"]["transforms"]:
- tf_key = cfg["type"]
- func = self._FUNC_MAP.get(tf_key)
- cfg.pop("type")
- args = cfg
- op = func(self, **args) if args else func(self)
- self._add_component(op)
- predictor = ImagePredictor(
- model_dir=self.model_dir,
- model_prefix=self.MODEL_FILE_PREFIX,
- option=self.pp_option,
- )
- self._add_component(("Predictor", predictor))
- @register("Resize")
- def build_resize(
- self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR"
- ):
- assert target_size
- op = Resize(
- target_size=target_size,
- keep_ratio=keep_ratio,
- size_divisor=size_divisor,
- interp=interp,
- )
- return op
- @register("ResizeByLong")
- def build_resizebylong(self, long_size):
- assert long_size
- return ResizeByLong(
- target_long_edge=long_size, size_divisor=size_divisor, interp=interp
- )
- @register("ResizeByShort")
- def build_resizebylong(self, short_size):
- assert short_size
- return ResizeByLong(
- target_long_edge=short_size, size_divisor=size_divisor, interp=interp
- )
- @register("Normalize")
- def build_normalize(
- self,
- mean=0.5,
- std=0.5,
- ):
- return Normalize(mean=mean, std=std)
- def _pack_res(self, single):
- keys = ["img_path", "pred"]
- return SegResult({key: single[key] for key in keys})
|