text_detection.py 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.text_detection.model_list import MODELS
  17. from ..components import *
  18. from ..results import TextDetResult
  19. from ..utils.process_hook import batchable_method
  20. from .base import CVPredictor
  21. class TextDetPredictor(CVPredictor):
  22. entities = MODELS
  23. _FUNC_MAP = {}
  24. register = FuncRegister(_FUNC_MAP)
  25. def _build_components(self):
  26. for cfg in self.config["PreProcess"]["transform_ops"]:
  27. tf_key = list(cfg.keys())[0]
  28. func = self._FUNC_MAP.get(tf_key)
  29. args = cfg.get(tf_key, {})
  30. op = func(self, **args) if args else func(self)
  31. if op:
  32. self._add_component(op)
  33. predictor = ImagePredictor(
  34. model_dir=self.model_dir,
  35. model_prefix=self.MODEL_FILE_PREFIX,
  36. option=self.pp_option,
  37. )
  38. self._add_component(("Predictor", predictor))
  39. op = self.build_postprocess(**self.config["PostProcess"])
  40. self._add_component(op)
  41. @register("DecodeImage")
  42. def build_readimg(self, channel_first, img_mode):
  43. assert channel_first == False
  44. return ReadImage(format=img_mode)
  45. @register("DetResizeForTest")
  46. def build_resize(self, resize_long=960):
  47. return DetResizeForTest(limit_side_len=resize_long, limit_type="max")
  48. @register("NormalizeImage")
  49. def build_normalize(
  50. self,
  51. mean=[0.485, 0.456, 0.406],
  52. std=[0.229, 0.224, 0.225],
  53. scale=1 / 255,
  54. order="",
  55. channel_num=3,
  56. ):
  57. return NormalizeImage(
  58. mean=mean, std=std, scale=scale, order=order, channel_num=channel_num
  59. )
  60. @register("ToCHWImage")
  61. def build_to_chw(self):
  62. return ToCHWImage()
  63. def build_postprocess(self, **kwargs):
  64. if kwargs.get("name") == "DBPostProcess":
  65. return DBPostProcess(
  66. thresh=kwargs.get("thresh", 0.3),
  67. box_thresh=kwargs.get("box_thresh", 0.7),
  68. max_candidates=kwargs.get("max_candidates", 1000),
  69. unclip_ratio=kwargs.get("unclip_ratio", 2.0),
  70. use_dilation=kwargs.get("use_dilation", False),
  71. score_mode=kwargs.get("score_mode", "fast"),
  72. box_type=kwargs.get("box_type", "quad"),
  73. )
  74. else:
  75. raise Exception()
  76. @register("DetLabelEncode")
  77. def foo(self, *args, **kwargs):
  78. return None
  79. @register("KeepKeys")
  80. def foo(self, *args, **kwargs):
  81. return None
  82. def _pack_res(self, single):
  83. keys = ["img_path", "dt_polys", "dt_scores"]
  84. return TextDetResult({key: single[key] for key in keys})