ts_cls.py 2.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from ...modules.ts_classification.model_list import MODELS
  16. from ..components import *
  17. from ..results import TSClsResult
  18. from ..utils.process_hook import batchable_method
  19. from .base import BasicPredictor
  20. class TSClsPredictor(BasicPredictor):
  21. entities = MODELS
  22. def _build_components(self):
  23. preprocess = self._build_preprocess()
  24. predictor = TSPPPredictor(
  25. model_dir=self.model_dir,
  26. model_prefix=self.MODEL_FILE_PREFIX,
  27. option=self.pp_option,
  28. )
  29. return {**preprocess, "predictor": predictor, "GetCls": GetCls()}
  30. def _build_preprocess(self):
  31. if not self.config.get("info_params", None):
  32. raise Exception("info_params is not found in config file")
  33. ops = {}
  34. ops["ReadTS"] = ReadTS()
  35. if self.config.get("scale", None):
  36. scaler_file_path = os.path.join(self.model_dir, "scaler.pkl")
  37. if not os.path.exists(scaler_file_path):
  38. raise Exception(f"Cannot find scaler file: {scaler_file_path}")
  39. ops["TSNormalize"] = TSNormalize(
  40. scaler_file_path, self.config["info_params"]
  41. )
  42. ops["BuildTSDataset"] = BuildTSDataset(self.config["info_params"])
  43. ops["BuildPadMask"] = BuildPadMask(self.config["input_data"])
  44. ops["TStoArray"] = TStoArray(self.config["input_data"])
  45. return ops
  46. def _pack_res(self, single):
  47. return TSClsResult(
  48. {"ts_path": single["ts_path"], "classification": single["classification"]}
  49. )