predictor.py 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from copy import deepcopy
  16. from abc import ABC, abstractmethod
  17. from .kernel_option import PaddleInferenceOption
  18. from .utils.paddle_inference_predictor import _PaddleInferencePredictor
  19. from .utils.mixin import FromDictMixin
  20. from .utils.batch import batchable_method, Batcher
  21. from .utils.node import Node
  22. from .utils.official_models import official_models
  23. from ....utils.device import get_device
  24. from ....utils import logging
  25. from ....utils.config import AttrDict
  26. class BasePredictor(ABC, FromDictMixin, Node):
  27. """ Base Predictor """
  28. __is_base = True
  29. MODEL_FILE_TAG = 'inference'
  30. def __init__(self,
  31. model_dir,
  32. kernel_option,
  33. pre_transforms=None,
  34. post_transforms=None):
  35. super().__init__()
  36. self.model_dir = model_dir
  37. self.pre_transforms = pre_transforms
  38. self.post_transforms = post_transforms
  39. self.kernel_option = kernel_option
  40. param_path = os.path.join(model_dir, f"{self.MODEL_FILE_TAG}.pdiparams")
  41. model_path = os.path.join(model_dir, f"{self.MODEL_FILE_TAG}.pdmodel")
  42. self._predictor = _PaddleInferencePredictor(
  43. param_path=param_path, model_path=model_path, option=kernel_option)
  44. self.other_src = self.load_other_src()
  45. def predict(self, input, batch_size=1):
  46. """ predict """
  47. if not isinstance(input, dict) and not (isinstance(input, list) and all(
  48. isinstance(ele, dict) for ele in input)):
  49. raise TypeError(f"`input` should be a dict or a list of dicts.")
  50. orig_input = input
  51. if isinstance(input, dict):
  52. input = [input]
  53. logging.debug(
  54. f"-------------------- {self.__class__.__name__} --------------------\n\
  55. Model: {self.model_dir}\nEnv: {self.kernel_option}")
  56. data = input[0]
  57. if self.pre_transforms is not None:
  58. pre_tfs = self.pre_transforms
  59. else:
  60. pre_tfs = self._get_pre_transforms_for_data(data)
  61. logging.debug(f"Preprocess Ops: {self._format_transforms(pre_tfs)}")
  62. if self.post_transforms is not None:
  63. post_tfs = self.post_transforms
  64. else:
  65. post_tfs = self._get_post_transforms_for_data(data)
  66. logging.debug(f"Postprocessing: {self._format_transforms(post_tfs)}")
  67. output = []
  68. for mini_batch in Batcher(input, batch_size=batch_size):
  69. mini_batch = self._preprocess(mini_batch, pre_transforms=pre_tfs)
  70. for data in mini_batch:
  71. self.check_input_keys(data)
  72. mini_batch = self._run(batch_input=mini_batch)
  73. for data in mini_batch:
  74. self.check_output_keys(data)
  75. mini_batch = self._postprocess(mini_batch, post_transforms=post_tfs)
  76. output.extend(mini_batch)
  77. if isinstance(orig_input, dict):
  78. return output[0]
  79. else:
  80. return output
  81. @abstractmethod
  82. def _run(self, batch_input):
  83. raise NotImplementedError
  84. @abstractmethod
  85. def _get_pre_transforms_for_data(self, data):
  86. """ get preprocess transforms """
  87. raise NotImplementedError
  88. @abstractmethod
  89. def _get_post_transforms_for_data(self, data):
  90. """ get postprocess transforms """
  91. raise NotImplementedError
  92. @batchable_method
  93. def _preprocess(self, data, pre_transforms):
  94. """ preprocess """
  95. for tf in pre_transforms:
  96. data = tf(data)
  97. return data
  98. @batchable_method
  99. def _postprocess(self, data, post_transforms):
  100. """ postprocess """
  101. for tf in post_transforms:
  102. data = tf(data)
  103. return data
  104. def _format_transforms(self, transforms):
  105. """ format transforms """
  106. ops_str = ", ".join([str(tf) for tf in transforms])
  107. return f"[{ops_str}]"
  108. def load_other_src(self):
  109. """ load other source
  110. """
  111. return None
  112. class PredictorBuilderByConfig(object):
  113. """build model predictor
  114. """
  115. def __init__(self, config):
  116. """
  117. Args:
  118. config (AttrDict): PaddleX pipeline config, which is loaded from pipeline yaml file.
  119. """
  120. model_name = config.Global.model
  121. device = config.Global.device.split(':')[0]
  122. predict_config = deepcopy(config.Predict)
  123. model_dir = predict_config.pop('model_dir')
  124. kernel_setting = predict_config.pop('kernel_option', {})
  125. kernel_setting.setdefault('device', device)
  126. kernel_option = PaddleInferenceOption(**kernel_setting)
  127. self.input_path = predict_config.pop('input_path')
  128. self.predictor = BasePredictor.get(model_name)(model_dir, kernel_option,
  129. **predict_config)
  130. self.output = config.Global.output
  131. def __call__(self):
  132. data = {
  133. "input_path": self.input_path,
  134. "cli_flag": True,
  135. "output_dir": self.output
  136. }
  137. self.predictor.predict(data)
  138. def build_predictor(*args, **kwargs):
  139. """build predictor by config for dev
  140. """
  141. return PredictorBuilderByConfig(*args, **kwargs)
  142. def create_model(model_name,
  143. model_dir=None,
  144. kernel_option=None,
  145. pre_transforms=None,
  146. post_transforms=None,
  147. *args,
  148. **kwargs):
  149. """create model for predicting using inference model
  150. """
  151. kernel_option = PaddleInferenceOption(
  152. ) if kernel_option is None else kernel_option
  153. model_dir = official_models[model_name] if model_dir is None else model_dir
  154. return BasePredictor.get(model_name)(model_dir, kernel_option,
  155. pre_transforms, post_transforms, *args,
  156. **kwargs)