evaluator.py 1.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from ..base import BaseEvaluator
  15. from .support_models import SUPPORT_MODELS
  16. class ClsEvaluator(BaseEvaluator):
  17. """ Image Classification Model Evaluator """
  18. support_models = SUPPORT_MODELS
  19. def update_config(self):
  20. """update evalution config
  21. """
  22. if self.eval_config.log_interval:
  23. self.pdx_config.update_log_interval(self.eval_config.log_interval)
  24. if self.pdx_config["Arch"]["name"] == "DistillationModel":
  25. self.pdx_config.update_teacher_model(pretrained=False)
  26. self.pdx_config.update_student_model(pretrained=False)
  27. self.pdx_config.update_dataset(self.global_config.dataset_dir,
  28. "ClsDataset")
  29. self.pdx_config.update_pretrained_weights(self.eval_config.weight_path)
  30. def get_eval_kwargs(self) -> dict:
  31. """get key-value arguments of model evalution function
  32. Returns:
  33. dict: the arguments of evaluation function.
  34. """
  35. return {
  36. "weight_path": self.eval_config.weight_path,
  37. "device": self.get_device(using_device_number=1)
  38. }