| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import codecs
- import yaml
- from ....utils import logging
- from ...base.predictor.transforms import image_common
- from .transforms import SaveDetResults, PadStride, DetResize
- class InnerConfig(object):
- """Inner Config"""
- def __init__(self, config_path):
- self.inner_cfg = self.load(config_path)
- def load(self, config_path):
- """ load infer config """
- with codecs.open(config_path, 'r', 'utf-8') as file:
- dic = yaml.load(file, Loader=yaml.FullLoader)
- return dic
- @property
- def pre_transforms(self):
- """ read preprocess transforms from config file """
- tfs_cfg = self.inner_cfg["Preprocess"]
- tfs = []
- for cfg in tfs_cfg:
- if cfg['type'] == 'NormalizeImage':
- mean = cfg.get('mean', 0.5)
- std = cfg.get('std', 0.5)
- scale = 1. / 255. if cfg.get('is_scale', True) else 1
- norm_type = cfg.get('norm_type', "mean_std")
- if norm_type != "mean_std":
- mean = 0
- std = 1
- tf = image_common.Normalize(mean=mean, std=std, scale=scale)
- elif cfg['type'] == 'Resize':
- interp = cfg.get('interp', 'LINEAR')
- if isinstance(interp, int):
- interp = {
- 0: 'NEAREST',
- 1: 'LINEAR',
- 2: 'CUBIC',
- 3: 'AREA',
- 4: 'LANCZOS4'
- }[interp]
- tf = DetResize(
- target_hw=cfg['target_size'],
- keep_ratio=cfg.get('keep_ratio', True),
- interp=interp)
- elif cfg['type'] == 'Permute':
- tf = image_common.ToCHWImage()
- elif cfg['type'] == 'PadStride':
- stride = cfg.get('stride', 32)
- tf = PadStride(stride=stride)
- else:
- raise RuntimeError(f"Unsupported type: {cfg['type']}")
- tfs.append(tf)
- return tfs
- @property
- def labels(self):
- """ the labels in inner config """
- return self.inner_cfg["label_list"]
|