| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import shutil
- from random import shuffle
- from .....utils.file_interface import custom_open
- def split_dataset(dataset_root, train_rate, val_rate):
- """
- 将图像数据集按照比例分成训练集、验证集和测试集,并生成对应的.txt文件。
-
- Args:
- dataset_root (str): 数据集根目录路径。
- train_rate (int): 训练集占总数据集的比例(%)。
- val_rate (int): 验证集占总数据集的比例(%)。
-
- Returns:
- str: 数据划分结果信息。
- """
- sum_rate = train_rate + val_rate
- if sum_rate != 100:
- return "训练集、验证集比例之和需要等于100,请修改后重试"
- tags = ["train", "val"]
- valid_path = False
- image_files = []
- for tag in tags:
- split_image_list = os.path.abspath(
- os.path.join(dataset_root, f'{tag}.txt'))
- rename_image_list = os.path.abspath(
- os.path.join(dataset_root, f'{tag}.txt.bak'))
- if os.path.exists(split_image_list):
- with custom_open(split_image_list, 'r') as f:
- lines = f.readlines()
- image_files = image_files + lines
- valid_path = True
- if not os.path.exists(rename_image_list):
- os.rename(split_image_list, rename_image_list)
- if not valid_path:
- return f"数据集目录下保存待划分文件{tags[0]}.txt或{tags[1]}.txt不存在,请检查后重试"
- shuffle(image_files)
- start = 0
- image_num = len(image_files)
- rate_list = [train_rate, val_rate]
- for i, tag in enumerate(tags):
- rate = rate_list[i]
- if rate == 0:
- continue
- if rate > 100 or rate < 0:
- return f"{tag} 数据集的比例应该在0~100之间."
- end = start + round(image_num * rate / 100)
- if sum(rate_list[i + 1:]) == 0:
- end = image_num
- txt_file = os.path.abspath(os.path.join(dataset_root, tag + '.txt'))
- with custom_open(txt_file, 'w') as f:
- m = 0
- for id in range(start, end):
- m += 1
- f.write(image_files[id])
- start = end
- return dataset_root
|