evaluator.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import tarfile
  15. from pathlib import Path
  16. from ..base import BaseEvaluator
  17. from .support_models import SUPPORT_MODELS
  18. class TSADEvaluator(BaseEvaluator):
  19. """ TS Anomaly Detection Model Evaluator """
  20. support_models = SUPPORT_MODELS
  21. def update_config(self):
  22. """update evalution config
  23. """
  24. self.pdx_config.update_dataset(self.global_config.dataset_dir,
  25. "TSADDataset")
  26. self.pdx_config.update_weights(self.eval_config.weight_path)
  27. def uncompress_tar_file(self):
  28. """unpackage the tar file containing training outputs and update weight path
  29. """
  30. if tarfile.is_tarfile(self.eval_config.weight_path):
  31. dest_path = Path(self.eval_config.weight_path).parent
  32. with tarfile.open(self.eval_config.weight_path, 'r') as tar:
  33. tar.extractall(path=dest_path)
  34. self.eval_config.weight_path = dest_path.joinpath(
  35. "best_accuracy.pdparams/best_model/model.pdparams")
  36. def eval(self):
  37. """firstly, update evaluation config, then evaluate model, finally return the evaluation result
  38. """
  39. self.uncompress_tar_file()
  40. self.update_config()
  41. evaluate_result = self.pdx_model.evaluate(**self.get_eval_kwargs())
  42. assert evaluate_result.returncode == 0, f"Encountered an unexpected error({evaluate_result.returncode}) in \
  43. evaling!"
  44. return evaluate_result.metrics
  45. def get_eval_kwargs(self) -> dict:
  46. """get key-value arguments of model evalution function
  47. Returns:
  48. dict: the arguments of evaluation function.
  49. """
  50. return {
  51. "weight_path": self.eval_config.weight_path,
  52. "device": self.get_device(using_device_number=1)
  53. }