evaluator.py 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import tarfile
  15. from pathlib import Path
  16. from ..base import BaseEvaluator
  17. from .support_models import SUPPORT_MODELS
  18. class TSFCEvaluator(BaseEvaluator):
  19. """ TS Forecast Model Evaluator """
  20. support_models = SUPPORT_MODELS
  21. def update_config(self):
  22. """update evalution config
  23. """
  24. self.pdx_config.update_dataset(self.global_config.dataset_dir,
  25. "TSDataset")
  26. def get_eval_kwargs(self) -> dict:
  27. """get key-value arguments of model evalution function
  28. Returns:
  29. dict: the arguments of evaluation function.
  30. """
  31. return {
  32. "weight_path": self.eval_config.weight_path,
  33. "device": self.get_device(using_device_number=1)
  34. }
  35. def uncompress_tar_file(self):
  36. """unpackage the tar file containing training outputs and update weight path
  37. """
  38. if tarfile.is_tarfile(self.eval_config.weight_path):
  39. dest_path = Path(self.eval_config.weight_path).parent
  40. with tarfile.open(self.eval_config.weight_path, 'r') as tar:
  41. tar.extractall(path=dest_path)
  42. self.eval_config.weight_path = dest_path.joinpath(
  43. "best_accuracy.pdparams/best_model/model.pdparams")
  44. def eval(self):
  45. """firstly, update evaluation config, then evaluate model, finally return the evaluation result
  46. """
  47. self.uncompress_tar_file()
  48. self.update_config()
  49. evaluate_result = self.pdx_model.evaluate(**self.get_eval_kwargs())
  50. assert evaluate_result.returncode == 0, f"Encountered an unexpected error({evaluate_result.returncode}) in \
  51. evaling!"
  52. return evaluate_result.metrics