| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import os.path as osp
- import random
- import copy
- import json
- import cv2
- import numpy as np
- import paddlex.utils.logging as logging
- from paddlex.utils import path_normalization
- from .dataset import Dataset
- from .dataset import get_encoding
- from .dataset import is_pic
- class EasyDataSeg(Dataset):
- """读取EasyDataSeg语义分割任务数据集,并对样本进行相应的处理。
- Args:
- data_dir (str): 数据集所在的目录路径。
- file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。
- label_list (str): 描述数据集包含的类别信息文件路径。
- transforms (list): 数据集中每个样本的预处理/增强算子。
- num_workers (int): 数据集中样本在预处理过程中的线程或进程数。默认为4。
- buffer_size (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。
- parallel_method (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'
- 线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。
- shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
- """
- def __init__(self,
- data_dir,
- file_list,
- label_list,
- transforms=None,
- num_workers='auto',
- buffer_size=100,
- parallel_method='process',
- shuffle=False):
- super(EasyDataSeg, self).__init__(
- transforms=transforms,
- num_workers=num_workers,
- buffer_size=buffer_size,
- parallel_method=parallel_method,
- shuffle=shuffle)
- self.file_list = list()
- self.labels = list()
- self._epoch = 0
- from pycocotools.mask import decode
- cname2cid = {}
- label_id = 0
- with open(label_list, encoding=get_encoding(label_list)) as fr:
- for line in fr.readlines():
- cname2cid[line.strip()] = label_id
- label_id += 1
- self.labels.append(line.strip())
-
- with open(file_list, encoding=get_encoding(file_list)) as f:
- for line in f:
- img_file, json_file = [osp.join(data_dir, x) \
- for x in line.strip().split()[:2]]
- img_file = path_normalization(img_file)
- json_file = path_normalization(json_file)
- if not is_pic(img_file):
- continue
- if not osp.isfile(json_file):
- continue
- if not osp.exists(img_file):
- raise IOError(
- 'The image file {} is not exist!'.format(img_file))
- with open(json_file, mode='r', \
- encoding=get_encoding(json_file)) as j:
- json_info = json.load(j)
- im = cv2.imread(img_file)
- im_w = im.shape[1]
- im_h = im.shape[0]
- objs = json_info['labels']
- lable_npy = np.zeros([im_h, im_w]).astype('uint8')
- for i, obj in enumerate(objs):
- cname = obj['name']
- cid = cname2cid[cname]
- mask_dict = {}
- mask_dict['size'] = [im_h, im_w]
- mask_dict['counts'] = obj['mask'].encode()
- mask = decode(mask_dict)
- mask *= cid
- conflict_index = np.where(((lable_npy > 0) & (mask == cid)) == True)
- mask[conflict_index] = 0
- lable_npy += mask
- self.file_list.append([img_file, lable_npy])
- self.num_samples = len(self.file_list)
- logging.info("{} samples in file {}".format(
- len(self.file_list), file_list))
- def iterator(self):
- self._epoch += 1
- self._pos = 0
- files = copy.deepcopy(self.file_list)
- if self.shuffle:
- random.shuffle(files)
- files = files[:self.num_samples]
- self.num_samples = len(files)
- for f in files:
- lable_npy = f[1]
- sample = [f[0], None, lable_npy]
- yield sample
|