trainer.py 2.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import glob
  16. from pathlib import Path
  17. from ..base import BaseTrainer
  18. from ...utils.config import AttrDict
  19. from .model_list import MODELS
  20. class UadTrainer(BaseTrainer):
  21. """Uad Model Trainer"""
  22. entities = MODELS
  23. def update_config(self):
  24. """update training config"""
  25. self.pdx_config.update_dataset(self.global_config.dataset_dir, "SegDataset")
  26. if self.train_config.num_classes is not None:
  27. self.pdx_config.update_num_classes(self.train_config.num_classes)
  28. if (
  29. self.train_config.pretrain_weight_path
  30. and self.train_config.pretrain_weight_path != ""
  31. ):
  32. self.pdx_config.update_pretrained_weights(
  33. self.train_config.pretrain_weight_path, is_backbone=True
  34. )
  35. def get_train_kwargs(self) -> dict:
  36. """get key-value arguments of model training function
  37. Returns:
  38. dict: the arguments of training function.
  39. """
  40. train_args = {"device": self.get_device()}
  41. # XXX:
  42. os.environ.pop("FLAGS_npu_jit_compile", None)
  43. if self.train_config.batch_size is not None:
  44. train_args["batch_size"] = self.train_config.batch_size
  45. if self.train_config.learning_rate is not None:
  46. train_args["learning_rate"] = self.train_config.learning_rate
  47. if self.train_config.epochs_iters is not None:
  48. train_args["epochs_iters"] = self.train_config.epochs_iters
  49. if (
  50. self.train_config.resume_path is not None
  51. and self.train_config.resume_path != ""
  52. ):
  53. train_args["resume_path"] = self.train_config.resume_path
  54. if self.global_config.output is not None:
  55. train_args["save_dir"] = self.global_config.output
  56. if self.train_config.log_interval:
  57. train_args["log_iters"] = self.train_config.log_interval
  58. if self.train_config.eval_interval:
  59. train_args["do_eval"] = True
  60. train_args["save_interval"] = self.train_config.eval_interval
  61. train_args["dy2st"] = self.train_config.get("dy2st", False)
  62. return train_args