| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import glob
- from pathlib import Path
- from ..base import BaseTrainer
- from ...utils.config import AttrDict
- from .model_list import MODELS
- class UadTrainer(BaseTrainer):
- """Uad Model Trainer"""
- entities = MODELS
- def update_config(self):
- """update training config"""
- self.pdx_config.update_dataset(self.global_config.dataset_dir, "SegDataset")
- if self.train_config.num_classes is not None:
- self.pdx_config.update_num_classes(self.train_config.num_classes)
- if (
- self.train_config.pretrain_weight_path
- and self.train_config.pretrain_weight_path != ""
- ):
- self.pdx_config.update_pretrained_weights(
- self.train_config.pretrain_weight_path, is_backbone=True
- )
- def get_train_kwargs(self) -> dict:
- """get key-value arguments of model training function
- Returns:
- dict: the arguments of training function.
- """
- train_args = {"device": self.get_device()}
- # XXX:
- os.environ.pop("FLAGS_npu_jit_compile", None)
- if self.train_config.batch_size is not None:
- train_args["batch_size"] = self.train_config.batch_size
- if self.train_config.learning_rate is not None:
- train_args["learning_rate"] = self.train_config.learning_rate
- if self.train_config.epochs_iters is not None:
- train_args["epochs_iters"] = self.train_config.epochs_iters
- if (
- self.train_config.resume_path is not None
- and self.train_config.resume_path != ""
- ):
- train_args["resume_path"] = self.train_config.resume_path
- if self.global_config.output is not None:
- train_args["save_dir"] = self.global_config.output
- if self.train_config.log_interval:
- train_args["log_iters"] = self.train_config.log_interval
- if self.train_config.eval_interval:
- train_args["do_eval"] = True
- train_args["save_interval"] = self.train_config.eval_interval
- train_args["dy2st"] = self.train_config.get("dy2st", False)
- return train_args
|