| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import List, Tuple, Union
- import os
- import sys
- import cv2
- import copy
- import math
- import pyclipper
- import numpy as np
- from numpy.linalg import norm
- from PIL import Image
- from shapely.geometry import Polygon
- from ...utils.io import ImageReader
- from ....utils import logging
- from ...utils.benchmark import benchmark
- @benchmark.timeit
- class DetResizeForTest:
- """DetResizeForTest"""
- def __init__(self, **kwargs):
- super().__init__()
- self.resize_type = 0
- self.keep_ratio = False
- if "image_shape" in kwargs:
- self.image_shape = kwargs["image_shape"]
- self.resize_type = 1
- if "keep_ratio" in kwargs:
- self.keep_ratio = kwargs["keep_ratio"]
- elif "limit_side_len" in kwargs:
- self.limit_side_len = kwargs["limit_side_len"]
- self.limit_type = kwargs.get("limit_type", "min")
- elif "resize_long" in kwargs:
- self.resize_type = 2
- self.resize_long = kwargs.get("resize_long", 960)
- else:
- self.limit_side_len = 736
- self.limit_type = "min"
- def __call__(
- self,
- imgs,
- limit_side_len: Union[int, None] = None,
- limit_type: Union[str, None] = None,
- ):
- """apply"""
- resize_imgs, img_shapes = [], []
- for ori_img in imgs:
- img, shape = self.resize(ori_img, limit_side_len, limit_type)
- resize_imgs.append(img)
- img_shapes.append(shape)
- return resize_imgs, img_shapes
- def resize(
- self, img, limit_side_len: Union[int, None], limit_type: Union[str, None]
- ):
- src_h, src_w, _ = img.shape
- if sum([src_h, src_w]) < 64:
- img = self.image_padding(img)
- if self.resize_type == 0:
- # img, shape = self.resize_image_type0(img)
- img, [ratio_h, ratio_w] = self.resize_image_type0(
- img, limit_side_len, limit_type
- )
- elif self.resize_type == 2:
- img, [ratio_h, ratio_w] = self.resize_image_type2(img)
- else:
- # img, shape = self.resize_image_type1(img)
- img, [ratio_h, ratio_w] = self.resize_image_type1(img)
- return img, np.array([src_h, src_w, ratio_h, ratio_w])
- def image_padding(self, im, value=0):
- """padding image"""
- h, w, c = im.shape
- im_pad = np.zeros((max(32, h), max(32, w), c), np.uint8) + value
- im_pad[:h, :w, :] = im
- return im_pad
- def resize_image_type1(self, img):
- """resize the image"""
- resize_h, resize_w = self.image_shape
- ori_h, ori_w = img.shape[:2] # (h, w, c)
- if self.keep_ratio is True:
- resize_w = ori_w * resize_h / ori_h
- N = math.ceil(resize_w / 32)
- resize_w = N * 32
- ratio_h = float(resize_h) / ori_h
- ratio_w = float(resize_w) / ori_w
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
- # return img, np.array([ori_h, ori_w])
- return img, [ratio_h, ratio_w]
- def resize_image_type0(
- self, img, limit_side_len: Union[int, None], limit_type: Union[str, None]
- ):
- """
- resize image to a size multiple of 32 which is required by the network
- args:
- img(array): array with shape [h, w, c]
- return(tuple):
- img, (ratio_h, ratio_w)
- """
- limit_side_len = limit_side_len or self.limit_side_len
- limit_type = limit_type or self.limit_type
- h, w, c = img.shape
- # limit the max side
- if limit_type == "max":
- if max(h, w) > limit_side_len:
- if h > w:
- ratio = float(limit_side_len) / h
- else:
- ratio = float(limit_side_len) / w
- else:
- ratio = 1.0
- elif limit_type == "min":
- if min(h, w) < limit_side_len:
- if h < w:
- ratio = float(limit_side_len) / h
- else:
- ratio = float(limit_side_len) / w
- else:
- ratio = 1.0
- elif limit_type == "resize_long":
- ratio = float(limit_side_len) / max(h, w)
- else:
- raise Exception("not support limit type, image ")
- resize_h = int(h * ratio)
- resize_w = int(w * ratio)
- resize_h = max(int(round(resize_h / 32) * 32), 32)
- resize_w = max(int(round(resize_w / 32) * 32), 32)
- try:
- if int(resize_w) <= 0 or int(resize_h) <= 0:
- return None, (None, None)
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
- except:
- logging.info(img.shape, resize_w, resize_h)
- sys.exit(0)
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- return img, [ratio_h, ratio_w]
- def resize_image_type2(self, img):
- """resize image size"""
- h, w, _ = img.shape
- resize_w = w
- resize_h = h
- if resize_h > resize_w:
- ratio = float(self.resize_long) / resize_h
- else:
- ratio = float(self.resize_long) / resize_w
- resize_h = int(resize_h * ratio)
- resize_w = int(resize_w * ratio)
- max_stride = 128
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- return img, [ratio_h, ratio_w]
- @benchmark.timeit
- class NormalizeImage:
- """normalize image such as substract mean, divide std"""
- def __init__(self, scale=None, mean=None, std=None, order="chw", **kwargs):
- super().__init__()
- if isinstance(scale, str):
- scale = eval(scale)
- self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
- mean = mean if mean is not None else [0.485, 0.456, 0.406]
- std = std if std is not None else [0.229, 0.224, 0.225]
- shape = (3, 1, 1) if order == "chw" else (1, 1, 3)
- self.mean = np.array(mean).reshape(shape).astype("float32")
- self.std = np.array(std).reshape(shape).astype("float32")
- def __call__(self, imgs):
- """apply"""
- def norm(img):
- return (img.astype("float32") * self.scale - self.mean) / self.std
- return [norm(img) for img in imgs]
- @benchmark.timeit
- class DBPostProcess:
- """
- The post process for Differentiable Binarization (DB).
- """
- def __init__(
- self,
- thresh=0.3,
- box_thresh=0.7,
- max_candidates=1000,
- unclip_ratio=2.0,
- use_dilation=False,
- score_mode="fast",
- box_type="quad",
- **kwargs
- ):
- super().__init__()
- self.thresh = thresh
- self.box_thresh = box_thresh
- self.max_candidates = max_candidates
- self.unclip_ratio = unclip_ratio
- self.min_size = 3
- self.score_mode = score_mode
- self.box_type = box_type
- assert score_mode in [
- "slow",
- "fast",
- ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
- self.use_dilation = use_dilation
- def polygons_from_bitmap(
- self,
- pred,
- _bitmap,
- dest_width,
- dest_height,
- box_thresh,
- unclip_ratio,
- ):
- """_bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1}"""
- bitmap = _bitmap
- height, width = bitmap.shape
- boxes = []
- scores = []
- contours, _ = cv2.findContours(
- (bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
- )
- for contour in contours[: self.max_candidates]:
- epsilon = 0.002 * cv2.arcLength(contour, True)
- approx = cv2.approxPolyDP(contour, epsilon, True)
- points = approx.reshape((-1, 2))
- if points.shape[0] < 4:
- continue
- score = self.box_score_fast(pred, points.reshape(-1, 2))
- if box_thresh > score:
- continue
- if points.shape[0] > 2:
- box = self.unclip(points, unclip_ratio)
- if len(box) > 1:
- continue
- else:
- continue
- box = box.reshape(-1, 2)
- if len(box) > 0:
- _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
- if sside < self.min_size + 2:
- continue
- else:
- continue
- box = np.array(box)
- box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
- box[:, 1] = np.clip(
- np.round(box[:, 1] / height * dest_height), 0, dest_height
- )
- boxes.append(box)
- scores.append(score)
- return boxes, scores
- def boxes_from_bitmap(
- self,
- pred,
- _bitmap,
- dest_width,
- dest_height,
- box_thresh,
- unclip_ratio,
- ):
- """_bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1}"""
- bitmap = _bitmap
- height, width = bitmap.shape
- outs = cv2.findContours(
- (bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
- )
- if len(outs) == 3:
- img, contours, _ = outs[0], outs[1], outs[2]
- elif len(outs) == 2:
- contours, _ = outs[0], outs[1]
- num_contours = min(len(contours), self.max_candidates)
- boxes = []
- scores = []
- for index in range(num_contours):
- contour = contours[index]
- points, sside = self.get_mini_boxes(contour)
- if sside < self.min_size:
- continue
- points = np.array(points)
- if self.score_mode == "fast":
- score = self.box_score_fast(pred, points.reshape(-1, 2))
- else:
- score = self.box_score_slow(pred, contour)
- if box_thresh > score:
- continue
- box = self.unclip(points, unclip_ratio).reshape(-1, 1, 2)
- box, sside = self.get_mini_boxes(box)
- if sside < self.min_size + 2:
- continue
- box = np.array(box)
- box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
- box[:, 1] = np.clip(
- np.round(box[:, 1] / height * dest_height), 0, dest_height
- )
- boxes.append(box.astype(np.int16))
- scores.append(score)
- return np.array(boxes, dtype=np.int16), scores
- def unclip(self, box, unclip_ratio):
- """unclip"""
- poly = Polygon(box)
- distance = poly.area * unclip_ratio / poly.length
- offset = pyclipper.PyclipperOffset()
- offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
- try:
- expanded = np.array(offset.Execute(distance))
- except ValueError:
- expanded = np.array(offset.Execute(distance)[0])
- return expanded
- def get_mini_boxes(self, contour):
- """get mini boxes"""
- bounding_box = cv2.minAreaRect(contour)
- points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
- index_1, index_2, index_3, index_4 = 0, 1, 2, 3
- if points[1][1] > points[0][1]:
- index_1 = 0
- index_4 = 1
- else:
- index_1 = 1
- index_4 = 0
- if points[3][1] > points[2][1]:
- index_2 = 2
- index_3 = 3
- else:
- index_2 = 3
- index_3 = 2
- box = [points[index_1], points[index_2], points[index_3], points[index_4]]
- return box, min(bounding_box[1])
- def box_score_fast(self, bitmap, _box):
- """box_score_fast: use bbox mean score as the mean score"""
- h, w = bitmap.shape[:2]
- box = _box.copy()
- xmin = np.clip(np.floor(box[:, 0].min()).astype("int"), 0, w - 1)
- xmax = np.clip(np.ceil(box[:, 0].max()).astype("int"), 0, w - 1)
- ymin = np.clip(np.floor(box[:, 1].min()).astype("int"), 0, h - 1)
- ymax = np.clip(np.ceil(box[:, 1].max()).astype("int"), 0, h - 1)
- mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
- box[:, 0] = box[:, 0] - xmin
- box[:, 1] = box[:, 1] - ymin
- cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
- return cv2.mean(bitmap[ymin : ymax + 1, xmin : xmax + 1], mask)[0]
- def box_score_slow(self, bitmap, contour):
- """box_score_slow: use polygon mean score as the mean score"""
- h, w = bitmap.shape[:2]
- contour = contour.copy()
- contour = np.reshape(contour, (-1, 2))
- xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
- xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
- ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
- ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
- mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
- contour[:, 0] = contour[:, 0] - xmin
- contour[:, 1] = contour[:, 1] - ymin
- cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
- return cv2.mean(bitmap[ymin : ymax + 1, xmin : xmax + 1], mask)[0]
- def __call__(
- self,
- preds,
- img_shapes,
- thresh: Union[float, None] = None,
- box_thresh: Union[float, None] = None,
- unclip_ratio: Union[float, None] = None,
- ):
- """apply"""
- boxes, scores = [], []
- for pred, img_shape in zip(preds[0], img_shapes):
- box, score = self.process(
- pred,
- img_shape,
- thresh or self.thresh,
- box_thresh or self.box_thresh,
- unclip_ratio or self.unclip_ratio,
- )
- boxes.append(box)
- scores.append(score)
- return boxes, scores
- def process(
- self,
- pred,
- img_shape,
- thresh,
- box_thresh,
- unclip_ratio,
- ):
- pred = pred[0, :, :]
- segmentation = pred > thresh
- dilation_kernel = None if not self.use_dilation else np.array([[1, 1], [1, 1]])
- src_h, src_w, ratio_h, ratio_w = img_shape
- if dilation_kernel is not None:
- mask = cv2.dilate(
- np.array(segmentation).astype(np.uint8),
- dilation_kernel,
- )
- else:
- mask = segmentation
- if self.box_type == "poly":
- boxes, scores = self.polygons_from_bitmap(
- pred, mask, src_w, src_h, box_thresh, unclip_ratio
- )
- elif self.box_type == "quad":
- boxes, scores = self.boxes_from_bitmap(
- pred, mask, src_w, src_h, box_thresh, unclip_ratio
- )
- else:
- raise ValueError("box_type can only be one of ['quad', 'poly']")
- return boxes, scores
|