model.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from abc import abstractmethod
  15. from copy import deepcopy
  16. from .inference import create_predictor, PaddlePredictorOption
  17. from .modules import (
  18. build_dataset_checker,
  19. build_trainer,
  20. build_evaluater,
  21. build_exportor,
  22. )
  23. # TODO(gaotingquan): support _ModelBasedConfig
  24. def create_model(model_name, model_dir=None, *args, **kwargs):
  25. return _ModelBasedInference(
  26. model_name=model_name, model_dir=model_dir, *args, **kwargs
  27. )
  28. class _BaseModel:
  29. def check_dataset(self, *args, **kwargs):
  30. raise Exception("check_dataset is not supported!")
  31. def train(self, *args, **kwargs):
  32. raise Exception("train is not supported!")
  33. def evaluate(self, *args, **kwargs):
  34. raise Exception("evaluate is not supported!")
  35. def export(self, *args, **kwargs):
  36. raise Exception("export is not supported!")
  37. def predict(self, *args, **kwargs):
  38. raise Exception("predict is not supported!")
  39. def set_predict(self, *args, **kwargs):
  40. raise Exception("set_predict is not supported!")
  41. def __call__(self, *args, **kwargs):
  42. yield from self.predict(*args, **kwargs)
  43. class _ModelBasedInference(_BaseModel):
  44. def __init__(self, *args, **kwargs):
  45. self._predictor = create_predictor(*args, **kwargs)
  46. def predict(self, *args, **kwargs):
  47. yield from self._predictor(*args, **kwargs)
  48. def set_predictor(self, **kwargs):
  49. self._predictor.set_predictor(**kwargs)
  50. def __getattr__(self, name):
  51. if hasattr(self._predictor, name):
  52. return getattr(self._predictor, name)
  53. raise AttributeError(
  54. f"'{self.__class__.__name__}' object has no attribute '{name}'"
  55. )
  56. class _ModelBasedConfig(_BaseModel):
  57. def __init__(self, config=None, *args, **kwargs):
  58. super().__init__()
  59. self._config = config
  60. self._model_name = config.Global.model
  61. def _build_predictor(self):
  62. predict_kwargs = deepcopy(self._config.Predict)
  63. model_dir = predict_kwargs.pop("model_dir", None)
  64. device = self._config.Global.get("device")
  65. kernel_option = predict_kwargs.pop("kernel_option", {})
  66. pp_option = PaddlePredictorOption(self._model_name, **kernel_option)
  67. predictor = create_predictor(
  68. self._model_name,
  69. model_dir,
  70. device=device,
  71. pp_option=pp_option,
  72. )
  73. assert "input" in predict_kwargs
  74. return predict_kwargs, predictor
  75. def check_dataset(self):
  76. dataset_checker = build_dataset_checker(self._config)
  77. return dataset_checker.check()
  78. def train(self):
  79. trainer = build_trainer(self._config)
  80. trainer.train()
  81. def evaluate(self):
  82. evaluator = build_evaluater(self._config)
  83. return evaluator.evaluate()
  84. def export(self):
  85. exportor = build_exportor(self._config)
  86. return exportor.export()
  87. def predict(self):
  88. predict_kwargs, predictor = self._build_predictor()
  89. yield from predictor(**predict_kwargs)