| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- from typing import Any, Dict, Optional
- import numpy as np
- from ..layout_parsing.utils import get_sub_regions_ocr_res
- from ..components import convert_points_to_boxes
- from .result import SingleTableRecognitionResult
- from ..ocr.result import OCRResult
- def get_ori_image_coordinate(x: int, y: int, box_list: list) -> list:
- """
- get the original coordinate from Cropped image to Original image.
- Args:
- x (int): x coordinate of cropped image
- y (int): y coordinate of cropped image
- box_list (list): list of table bounding boxes, eg. [[x1, y1, x2, y2, x3, y3, x4, y4]]
- Returns:
- list: list of original coordinates, eg. [[x1, y1, x2, y2, x3, y3, x4, y4]]
- """
- if not box_list:
- return box_list
- offset = np.array([x, y] * 4)
- box_list = np.array(box_list)
- if box_list.shape[-1] == 2:
- offset = offset.reshape(4, 2)
- ori_box_list = offset + box_list
- return ori_box_list
- def convert_table_structure_pred_bbox(
- cell_points_list: list, crop_start_point: list, img_shape: tuple
- ) -> None:
- """
- Convert the predicted table structure bounding boxes to the original image coordinate system.
- Args:
- cell_points_list (list): Bounding boxes ('bbox').
- crop_start_point (list): A list of two integers representing the starting point (x, y) of the cropped image region.
- img_shape (tuple): A tuple of two integers representing the shape (height, width) of the original image.
- Returns:
- cell_points_list (list): Bounding boxes ('bbox').
- """
- ori_cell_points_list = get_ori_image_coordinate(
- crop_start_point[0], crop_start_point[1], cell_points_list
- )
- ori_cell_points_list = np.reshape(ori_cell_points_list, (-1, 4, 2))
- cell_box_list = convert_points_to_boxes(ori_cell_points_list)
- img_height, img_width = img_shape
- cell_box_list = np.clip(
- cell_box_list, 0, [img_width, img_height, img_width, img_height]
- )
- return cell_box_list
- def distance(box_1: list, box_2: list) -> float:
- """
- compute the distance between two boxes
- Args:
- box_1 (list): first rectangle box,eg.(x1, y1, x2, y2)
- box_2 (list): second rectangle box,eg.(x1, y1, x2, y2)
- Returns:
- float: the distance between two boxes
- """
- x1, y1, x2, y2 = box_1
- x3, y3, x4, y4 = box_2
- center1_x = (x1 + x2) / 2
- center1_y = (y1 + y2) / 2
- center2_x = (x3 + x4) / 2
- center2_y = (y3 + y4) / 2
- dis = math.sqrt((center2_x - center1_x) ** 2 + (center2_y - center1_y) ** 2)
- dis_2 = abs(x3 - x1) + abs(y3 - y1)
- dis_3 = abs(x4 - x2) + abs(y4 - y2)
- return dis + min(dis_2, dis_3)
- def compute_iou(rec1: list, rec2: list) -> float:
- """
- computing IoU
- Args:
- rec1 (list): (x1, y1, x2, y2)
- rec2 (list): (x1, y1, x2, y2)
- Returns:
- float: Intersection over Union
- """
- # computing area of each rectangles
- S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
- S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
- # computing the sum_area
- sum_area = S_rec1 + S_rec2
- # find the each edge of intersect rectangle
- left_line = max(rec1[0], rec2[0])
- right_line = min(rec1[2], rec2[2])
- top_line = max(rec1[1], rec2[1])
- bottom_line = min(rec1[3], rec2[3])
- # judge if there is an intersect
- if left_line >= right_line or top_line >= bottom_line:
- return 0.0
- else:
- intersect = (right_line - left_line) * (bottom_line - top_line)
- return (intersect / (sum_area - intersect)) * 1.0
- def match_table_and_ocr(cell_box_list: list, ocr_dt_boxes: list) -> dict:
- """
- match table and ocr
- Args:
- cell_box_list (list): bbox for table cell, 2 points, [left, top, right, bottom]
- ocr_dt_boxes (list): bbox for ocr, 2 points, [left, top, right, bottom]
- Returns:
- dict: matched dict, key is table index, value is ocr index
- """
- matched = {}
- for i, ocr_box in enumerate(np.array(ocr_dt_boxes)):
- ocr_box = ocr_box.astype(np.float32)
- distances = []
- for j, table_box in enumerate(cell_box_list):
- if len(table_box) == 8:
- table_box = [
- np.min(table_box[0::2]),
- np.min(table_box[1::2]),
- np.max(table_box[0::2]),
- np.max(table_box[1::2]),
- ]
- distances.append(
- (distance(table_box, ocr_box), 1.0 - compute_iou(table_box, ocr_box))
- ) # compute iou and l1 distance
- sorted_distances = distances.copy()
- # select det box by iou and l1 distance
- sorted_distances = sorted(sorted_distances, key=lambda item: (item[1], item[0]))
- if distances.index(sorted_distances[0]) not in matched.keys():
- matched[distances.index(sorted_distances[0])] = [i]
- else:
- matched[distances.index(sorted_distances[0])].append(i)
- return matched
- def get_html_result(
- matched_index: dict, ocr_contents: dict, pred_structures: list
- ) -> str:
- """
- Generates HTML content based on the matched index, OCR contents, and predicted structures.
- Args:
- matched_index (dict): A dictionary containing matched indices.
- ocr_contents (dict): A dictionary of OCR contents.
- pred_structures (list): A list of predicted HTML structures.
- Returns:
- str: Generated HTML content as a string.
- """
- pred_html = []
- td_index = 0
- head_structure = pred_structures[0:3]
- html = "".join(head_structure)
- table_structure = pred_structures[3:-3]
- for tag in table_structure:
- if "</td>" in tag:
- if "<td></td>" == tag:
- pred_html.extend("<td>")
- if td_index in matched_index.keys():
- b_with = False
- if (
- "<b>" in ocr_contents[matched_index[td_index][0]]
- and len(matched_index[td_index]) > 1
- ):
- b_with = True
- pred_html.extend("<b>")
- for i, td_index_index in enumerate(matched_index[td_index]):
- content = ocr_contents[td_index_index]
- if len(matched_index[td_index]) > 1:
- if len(content) == 0:
- continue
- if content[0] == " ":
- content = content[1:]
- if "<b>" in content:
- content = content[3:]
- if "</b>" in content:
- content = content[:-4]
- if len(content) == 0:
- continue
- if i != len(matched_index[td_index]) - 1 and " " != content[-1]:
- content += " "
- pred_html.extend(content)
- if b_with:
- pred_html.extend("</b>")
- if "<td></td>" == tag:
- pred_html.append("</td>")
- else:
- pred_html.append(tag)
- td_index += 1
- else:
- pred_html.append(tag)
- html += "".join(pred_html)
- end_structure = pred_structures[-3:]
- html += "".join(end_structure)
- return html
- def sort_table_cells_boxes(boxes):
- """
- Sort the input list of bounding boxes by using the DBSCAN algorithm to cluster based on the top-left y-coordinate (y1), and then sort within each line from left to right based on the top-left x-coordinate (x1).
- Args:
- boxes (list of lists): The input list of bounding boxes, where each bounding box is formatted as [x1, y1, x2, y2].
- Returns:
- sorted_boxes (list of lists): The list of bounding boxes sorted.
- """
- import numpy as np
- from sklearn.cluster import DBSCAN
- # Extract the top-left y-coordinates (y1)
- y1_coords = np.array([box[1] for box in boxes])
- y1_coords = y1_coords.reshape(-1, 1) # Convert to a 2D array
- # Choose an appropriate eps parameter based on the range of y-values
- y_range = y1_coords.max() - y1_coords.min()
- eps = y_range / 50 # Adjust the denominator as needed
- # Perform clustering using DBSCAN
- db = DBSCAN(eps=eps, min_samples=1).fit(y1_coords)
- labels = db.labels_
- # Group bounding boxes by their labels
- clusters = {}
- for label, box in zip(labels, boxes):
- if label not in clusters:
- clusters[label] = []
- clusters[label].append(box)
- # Sort rows based on y-coordinates
- # Compute the average y1 value for each row and sort from top to bottom
- sorted_rows = sorted(
- clusters.items(), key=lambda item: np.mean([box[1] for box in item[1]])
- )
- # Within each row, sort by x1 coordinate
- sorted_boxes = []
- for label, row in sorted_rows:
- row_sorted = sorted(row, key=lambda x: x[0])
- sorted_boxes.extend(row_sorted)
- return sorted_boxes
- def convert_to_four_point_coordinates(boxes):
- """
- Convert bounding boxes from [x1, y1, x2, y2] format to
- [x1, y1, x2, y1, x2, y2, x1, y2] format.
- Parameters:
- - boxes: A list of bounding boxes, each defined as a list of integers
- in the format [x1, y1, x2, y2].
- Returns:
- - A list of bounding boxes, each converted to the format
- [x1, y1, x2, y1, x2, y2, x1, y2].
- """
- # Initialize an empty list to store the converted bounding boxes
- converted_boxes = []
- # Loop over each box in the input list
- for box in boxes:
- x1, y1, x2, y2 = box
-
- # Define the four corner points
- top_left = (x1, y1)
- top_right = (x2, y1)
- bottom_right = (x2, y2)
- bottom_left = (x1, y2)
- # Create a new list for the converted box
- converted_box = [
- top_left[0], top_left[1], # Top-left corner
- top_right[0], top_right[1], # Top-right corner
- bottom_right[0], bottom_right[1], # Bottom-right corner
- bottom_left[0], bottom_left[1] # Bottom-left corner
- ]
- # Append the converted box to the list
- converted_boxes.append(converted_box)
- return converted_boxes
- def get_table_recognition_res(
- table_box: list,
- table_structure_result: list,
- table_cells_result: list,
- overall_ocr_res: OCRResult,
- ) -> SingleTableRecognitionResult:
- """
- Retrieve table recognition result from cropped image info, table structure prediction, and overall OCR result.
- Args:
- table_box (list): Information about the location of cropped image, including the bounding box.
- table_structure_result (list): Predicted table structure.
- table_cells_result (list): Predicted table cells.
- overall_ocr_res (OCRResult): Overall OCR result from the input image.
- Returns:
- SingleTableRecognitionResult: An object containing the single table recognition result.
- """
- table_cells_result =convert_to_four_point_coordinates(table_cells_result)
- table_box = np.array([table_box])
- table_ocr_pred = get_sub_regions_ocr_res(overall_ocr_res, table_box)
- crop_start_point = [table_box[0][0], table_box[0][1]]
- img_shape = overall_ocr_res["doc_preprocessor_res"]["output_img"].shape[0:2]
- table_cells_result = convert_table_structure_pred_bbox(
- table_cells_result, crop_start_point, img_shape
- )
- ocr_dt_boxes = table_ocr_pred["rec_boxes"]
- ocr_texts_res = table_ocr_pred["rec_texts"]
- table_cells_result = sort_table_cells_boxes(table_cells_result)
- ocr_dt_boxes = sort_table_cells_boxes(ocr_dt_boxes)
- matched_index = match_table_and_ocr(table_cells_result, ocr_dt_boxes)
- pred_html = get_html_result(matched_index, ocr_texts_res, table_structure_result)
- single_img_res = {
- "cell_box_list": table_cells_result,
- "table_ocr_pred": table_ocr_pred,
- "pred_html": pred_html,
- }
- return SingleTableRecognitionResult(single_img_res)
|