| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- # This file is made availabel under the Apache license
- # This file is based on code availabel under Simplified BSD Licens:
- # https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305
- #
- # Copyright (c) 2014, Piotr Dollar and Tsung-Yi Lin
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are met:
- #
- # 1. Redistributions of source code must retain the above copyright notice, this
- # list of conditions and the following disclaimer.
- # 2. Redistributions in binary form must reproduce the above copyright notice,
- # this list of conditions and the following disclaimer in the documentation
- # and/or other materials provided with the distribution.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- #
- # The views and conclusions contained in the software and documentation are those
- # of the authors and should not be interpreted as representing official policies,
- # either expressed or implied, of the FreeBSD Project.
- def loadRes(coco_obj, anns):
- """
- Load result file and return a result api object.
- :param resFile (str) : file name of result file
- :return: res (obj) : result api object
- """
- # This function has the same functionality as pycocotools.COCO.loadRes,
- # except that the input anns is list of results rather than a json file.
- # Refer to
- # https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305,
- # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
- # or matplotlib.backends is imported for the first time
- # pycocotools import matplotlib
- import matplotlib
- matplotlib.use('Agg')
- from pycocotools.coco import COCO
- import pycocotools.mask as maskUtils
- import time
- res = COCO()
- res.dataset['images'] = [img for img in coco_obj.dataset['images']]
- tic = time.time()
- assert type(anns) == list, 'results in not an array of objects'
- annsImgIds = [ann['image_id'] for ann in anns]
- assert set(annsImgIds) == (set(annsImgIds) & set(coco_obj.getImgIds())), \
- 'Results do not correspond to current coco set'
- if 'caption' in anns[0]:
- imgIds = set([img['id'] for img in res.dataset['images']]) & set(
- [ann['image_id'] for ann in anns])
- res.dataset['images'] = [
- img for img in res.dataset['images'] if img['id'] in imgIds
- ]
- for id, ann in enumerate(anns):
- ann['id'] = id + 1
- elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
- res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
- 'categories'])
- for id, ann in enumerate(anns):
- bb = ann['bbox']
- x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
- if not 'segmentation' in ann:
- ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
- ann['area'] = bb[2] * bb[3]
- ann['id'] = id + 1
- ann['iscrowd'] = 0
- elif 'segmentation' in anns[0]:
- res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
- 'categories'])
- for id, ann in enumerate(anns):
- # now only support compressed RLE format as segmentation results
- ann['area'] = maskUtils.area(ann['segmentation'])
- if not 'bbox' in ann:
- ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
- ann['id'] = id + 1
- ann['iscrowd'] = 0
- elif 'keypoints' in anns[0]:
- res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
- 'categories'])
- for id, ann in enumerate(anns):
- s = ann['keypoints']
- x = s[0::3]
- y = s[1::3]
- x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y)
- ann['area'] = (x1 - x0) * (y1 - y0)
- ann['id'] = id + 1
- ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
- res.dataset['annotations'] = anns
- res.createIndex()
- return res
|