| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Dict, List, Tuple, Union
- import numpy as np
- from ..result_v2 import LayoutParsingBlock
- def calculate_projection_iou(
- bbox1: List[float], bbox2: List[float], direction: str = "horizontal"
- ) -> float:
- """
- Calculate the IoU of lines between two bounding boxes.
- Args:
- bbox1 (List[float]): First bounding box [x_min, y_min, x_max, y_max].
- bbox2 (List[float]): Second bounding box [x_min, y_min, x_max, y_max].
- direction (str): direction of the projection, "horizontal" or "vertical".
- Returns:
- float: Line IoU. Returns 0 if there is no overlap.
- """
- start_index, end_index = 1, 3
- if direction == "horizontal":
- start_index, end_index = 0, 2
- intersection_start = max(bbox1[start_index], bbox2[start_index])
- intersection_end = min(bbox1[end_index], bbox2[end_index])
- overlap = intersection_end - intersection_start
- if overlap <= 0:
- return 0
- union_width = max(bbox1[end_index], bbox2[end_index]) - min(
- bbox1[start_index], bbox2[start_index]
- )
- return overlap / union_width if union_width > 0 else 0.0
- def calculate_iou(
- bbox1: Union[list, tuple],
- bbox2: Union[list, tuple],
- ) -> float:
- """
- Calculate the Intersection over Union (IoU) of two bounding boxes.
- Parameters:
- bbox1 (list or tuple): The first bounding box, format [x_min, y_min, x_max, y_max]
- bbox2 (list or tuple): The second bounding box, format [x_min, y_min, x_max, y_max]
- Returns:
- float: The IoU value between the two bounding boxes
- """
- x_min_inter = max(bbox1[0], bbox2[0])
- y_min_inter = max(bbox1[1], bbox2[1])
- x_max_inter = min(bbox1[2], bbox2[2])
- y_max_inter = min(bbox1[3], bbox2[3])
- inter_width = max(0, x_max_inter - x_min_inter)
- inter_height = max(0, y_max_inter - y_min_inter)
- inter_area = inter_width * inter_height
- bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
- bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
- union_area = bbox1_area + bbox2_area - inter_area
- if union_area == 0:
- return 0.0
- return inter_area / union_area
- def get_nearest_edge_distance(
- bbox1: List[int],
- bbox2: List[int],
- weight: List[float] = [1.0, 1.0, 1.0, 1.0],
- ) -> Tuple[float]:
- """
- Calculate the nearest edge distance between two bounding boxes, considering directional weights.
- Args:
- bbox1 (list): The bounding box coordinates [x1, y1, x2, y2] of the input object.
- bbox2 (list): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
- weight (list, optional): Directional weights for the edge distances [left, right, up, down]. Defaults to [1, 1, 1, 1].
- Returns:
- float: The calculated minimum edge distance between the bounding boxes.
- """
- x1, y1, x2, y2 = bbox1
- x1_prime, y1_prime, x2_prime, y2_prime = bbox2
- min_x_distance, min_y_distance = 0, 0
- horizontal_iou = calculate_projection_iou(bbox1, bbox2, "horizontal")
- vertical_iou = calculate_projection_iou(bbox1, bbox2, "vertical")
- if horizontal_iou > 0 and vertical_iou > 0:
- return 0.0
- if horizontal_iou == 0:
- min_x_distance = min(abs(x1 - x2_prime), abs(x2 - x1_prime)) * (
- weight[0] if x2 < x1_prime else weight[1]
- )
- if vertical_iou == 0:
- min_y_distance = min(abs(y1 - y2_prime), abs(y2 - y1_prime)) * (
- weight[2] if y2 < y1_prime else weight[3]
- )
- return min_x_distance + min_y_distance
- def _projection_by_bboxes(boxes: np.ndarray, axis: int) -> np.ndarray:
- """
- Generate a 1D projection histogram from bounding boxes along a specified axis.
- Args:
- boxes: A (N, 4) array of bounding boxes defined by [x_min, y_min, x_max, y_max].
- axis: Axis for projection; 0 for horizontal (x-axis), 1 for vertical (y-axis).
- Returns:
- A 1D numpy array representing the projection histogram based on bounding box intervals.
- """
- assert axis in [0, 1]
- max_length = np.max(boxes[:, axis::2])
- projection = np.zeros(max_length, dtype=int)
- # Increment projection histogram over the interval defined by each bounding box
- for start, end in boxes[:, axis::2]:
- projection[start:end] += 1
- return projection
- def _split_projection_profile(arr_values: np.ndarray, min_value: float, min_gap: float):
- """
- Split the projection profile into segments based on specified thresholds.
- Args:
- arr_values: 1D array representing the projection profile.
- min_value: Minimum value threshold to consider a profile segment significant.
- min_gap: Minimum gap width to consider a separation between segments.
- Returns:
- A tuple of start and end indices for each segment that meets the criteria.
- """
- # Identify indices where the projection exceeds the minimum value
- significant_indices = np.where(arr_values > min_value)[0]
- if not len(significant_indices):
- return
- # Calculate gaps between significant indices
- index_diffs = significant_indices[1:] - significant_indices[:-1]
- gap_indices = np.where(index_diffs > min_gap)[0]
- # Determine start and end indices of segments
- segment_starts = np.insert(
- significant_indices[gap_indices + 1],
- 0,
- significant_indices[0],
- )
- segment_ends = np.append(
- significant_indices[gap_indices],
- significant_indices[-1] + 1,
- )
- return segment_starts, segment_ends
- def recursive_yx_cut(
- boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1
- ):
- """
- Recursively project and segment bounding boxes, starting with Y-axis and followed by X-axis.
- Args:
- boxes: A (N, 4) array representing bounding boxes.
- indices: List of indices indicating the original position of boxes.
- res: List to store indices of the final segmented bounding boxes.
- min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1.
- Returns:
- None: This function modifies the `res` list in place.
- """
- assert len(boxes) == len(
- indices
- ), "The length of boxes and indices must be the same."
- # Sort by y_min for Y-axis projection
- y_sorted_indices = boxes[:, 1].argsort()
- y_sorted_boxes = boxes[y_sorted_indices]
- y_sorted_indices = np.array(indices)[y_sorted_indices]
- # Perform Y-axis projection
- y_projection = _projection_by_bboxes(boxes=y_sorted_boxes, axis=1)
- y_intervals = _split_projection_profile(y_projection, 0, 1)
- if not y_intervals:
- return
- # Process each segment defined by Y-axis projection
- for y_start, y_end in zip(*y_intervals):
- # Select boxes within the current y interval
- y_interval_indices = (y_start <= y_sorted_boxes[:, 1]) & (
- y_sorted_boxes[:, 1] < y_end
- )
- y_boxes_chunk = y_sorted_boxes[y_interval_indices]
- y_indices_chunk = y_sorted_indices[y_interval_indices]
- # Sort by x_min for X-axis projection
- x_sorted_indices = y_boxes_chunk[:, 0].argsort()
- x_sorted_boxes_chunk = y_boxes_chunk[x_sorted_indices]
- x_sorted_indices_chunk = y_indices_chunk[x_sorted_indices]
- # Perform X-axis projection
- x_projection = _projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0)
- x_intervals = _split_projection_profile(x_projection, 0, min_gap)
- if not x_intervals:
- continue
- # If X-axis cannot be further segmented, add current indices to results
- if len(x_intervals[0]) == 1:
- res.extend(x_sorted_indices_chunk)
- continue
- # Recursively process each segment defined by X-axis projection
- for x_start, x_end in zip(*x_intervals):
- x_interval_indices = (x_start <= x_sorted_boxes_chunk[:, 0]) & (
- x_sorted_boxes_chunk[:, 0] < x_end
- )
- recursive_yx_cut(
- x_sorted_boxes_chunk[x_interval_indices],
- x_sorted_indices_chunk[x_interval_indices],
- res,
- )
- def recursive_xy_cut(
- boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1
- ):
- """
- Recursively performs X-axis projection followed by Y-axis projection to segment bounding boxes.
- Args:
- boxes: A (N, 4) array representing bounding boxes with [x_min, y_min, x_max, y_max].
- indices: A list of indices representing the position of boxes in the original data.
- res: A list to store indices of bounding boxes that meet the criteria.
- min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1.
- Returns:
- None: This function modifies the `res` list in place.
- """
- # Ensure boxes and indices have the same length
- assert len(boxes) == len(
- indices
- ), "The length of boxes and indices must be the same."
- # Sort by x_min to prepare for X-axis projection
- x_sorted_indices = boxes[:, 0].argsort()
- x_sorted_boxes = boxes[x_sorted_indices]
- x_sorted_indices = np.array(indices)[x_sorted_indices]
- # Perform X-axis projection
- x_projection = _projection_by_bboxes(boxes=x_sorted_boxes, axis=0)
- x_intervals = _split_projection_profile(x_projection, 0, 1)
- if not x_intervals:
- return
- # Process each segment defined by X-axis projection
- for x_start, x_end in zip(*x_intervals):
- # Select boxes within the current x interval
- x_interval_indices = (x_start <= x_sorted_boxes[:, 0]) & (
- x_sorted_boxes[:, 0] < x_end
- )
- x_boxes_chunk = x_sorted_boxes[x_interval_indices]
- x_indices_chunk = x_sorted_indices[x_interval_indices]
- # Sort selected boxes by y_min to prepare for Y-axis projection
- y_sorted_indices = x_boxes_chunk[:, 1].argsort()
- y_sorted_boxes_chunk = x_boxes_chunk[y_sorted_indices]
- y_sorted_indices_chunk = x_indices_chunk[y_sorted_indices]
- # Perform Y-axis projection
- y_projection = _projection_by_bboxes(boxes=y_sorted_boxes_chunk, axis=1)
- y_intervals = _split_projection_profile(y_projection, 0, min_gap)
- if not y_intervals:
- continue
- # If Y-axis cannot be further segmented, add current indices to results
- if len(y_intervals[0]) == 1:
- res.extend(y_sorted_indices_chunk)
- continue
- # Recursively process each segment defined by Y-axis projection
- for y_start, y_end in zip(*y_intervals):
- y_interval_indices = (y_start <= y_sorted_boxes_chunk[:, 1]) & (
- y_sorted_boxes_chunk[:, 1] < y_end
- )
- recursive_xy_cut(
- y_sorted_boxes_chunk[y_interval_indices],
- y_sorted_indices_chunk[y_interval_indices],
- res,
- )
- def reference_insert(
- block: LayoutParsingBlock,
- sorted_blocks: List[LayoutParsingBlock],
- config: Dict,
- median_width: float = 0.0,
- ):
- """
- Insert reference block into sorted blocks based on the distance between the block and the nearest sorted block.
- Args:
- block: The block to insert into the sorted blocks.
- sorted_blocks: The sorted blocks where the new block will be inserted.
- config: Configuration dictionary containing parameters related to the layout parsing.
- median_width: Median width of the document. Defaults to 0.0.
- Returns:
- sorted_blocks: The updated sorted blocks after insertion.
- """
- min_distance = float("inf")
- nearest_sorted_block_index = 0
- for sorted_block_idx, sorted_block in enumerate(sorted_blocks):
- if sorted_block.bbox[3] <= block.bbox[1]:
- distance = -(sorted_block.bbox[2] * 10 + sorted_block.bbox[3])
- if distance < min_distance:
- min_distance = distance
- nearest_sorted_block_index = sorted_block_idx
- sorted_blocks.insert(nearest_sorted_block_index + 1, block)
- return sorted_blocks
- def manhattan_insert(
- block: LayoutParsingBlock,
- sorted_blocks: List[LayoutParsingBlock],
- config: Dict,
- median_width: float = 0.0,
- ):
- """
- Insert a block into a sorted list of blocks based on the Manhattan distance between the block and the nearest sorted block.
- Args:
- block: The block to insert into the sorted blocks.
- sorted_blocks: The sorted blocks where the new block will be inserted.
- config: Configuration dictionary containing parameters related to the layout parsing.
- median_width: Median width of the document. Defaults to 0.0.
- Returns:
- sorted_blocks: The updated sorted blocks after insertion.
- """
- min_distance = float("inf")
- nearest_sorted_block_index = 0
- for sorted_block_idx, sorted_block in enumerate(sorted_blocks):
- distance = _manhattan_distance(block.bbox, sorted_block.bbox)
- if distance < min_distance:
- min_distance = distance
- nearest_sorted_block_index = sorted_block_idx
- sorted_blocks.insert(nearest_sorted_block_index + 1, block)
- return sorted_blocks
- def weighted_distance_insert(
- block: LayoutParsingBlock,
- sorted_blocks: List[LayoutParsingBlock],
- config: Dict,
- median_width: float = 0.0,
- ):
- """
- Insert a block into a sorted list of blocks based on the weighted distance between the block and the nearest sorted block.
- Args:
- block: The block to insert into the sorted blocks.
- sorted_blocks: The sorted blocks where the new block will be inserted.
- config: Configuration dictionary containing parameters related to the layout parsing.
- median_width: Median width of the document. Defaults to 0.0.
- Returns:
- sorted_blocks: The updated sorted blocks after insertion.
- """
- doc_title_labels = config.get("doc_title_labels", [])
- paragraph_title_labels = config.get("paragraph_title_labels", [])
- vision_labels = config.get("vision_labels", [])
- xy_cut_block_labels = config.get("xy_cut_block_labels", [])
- tolerance_len = config.get("tolerance_len", 2)
- x1, y1, x2, y2 = block.bbox
- min_weighted_distance, min_edge_distance, min_up_edge_distance = (
- float("inf"),
- float("inf"),
- float("inf"),
- )
- nearest_sorted_block_index = 0
- for sorted_block_idx, sorted_block in enumerate(sorted_blocks):
- x1_prime, y1_prime, x2_prime, y2_prime = sorted_block.bbox
- # Calculate edge distance
- weight = _get_weights(block.region_label, block.direction)
- edge_distance = get_nearest_edge_distance(block.bbox, sorted_block.bbox, weight)
- if block.label in doc_title_labels:
- disperse = max(1, median_width)
- tolerance_len = max(tolerance_len, disperse)
- if block.label == "abstract":
- tolerance_len *= 2
- edge_distance = max(0.1, edge_distance) * 10
- # Calculate up edge distances
- up_edge_distance = y1_prime
- left_edge_distance = x1_prime
- if (
- block.label in xy_cut_block_labels
- or block.label in doc_title_labels
- or block.label in paragraph_title_labels
- or block.label in vision_labels
- ) and y1 > y2_prime:
- up_edge_distance = -y2_prime
- left_edge_distance = -x2_prime
- if abs(min_up_edge_distance - up_edge_distance) <= tolerance_len:
- up_edge_distance = min_up_edge_distance
- # Calculate weighted distance
- weighted_distance = (
- +edge_distance * config.get("edge_weight", 10**4)
- + up_edge_distance * config.get("up_edge_weight", 1)
- + left_edge_distance * config.get("left_edge_weight", 0.0001)
- )
- min_edge_distance = min(edge_distance, min_edge_distance)
- min_up_edge_distance = min(up_edge_distance, min_up_edge_distance)
- if weighted_distance < min_weighted_distance:
- nearest_sorted_block_index = sorted_block_idx
- min_weighted_distance = weighted_distance
- if y1 > y1_prime or (y1 == y1_prime and x1 > x1_prime):
- nearest_sorted_block_index = sorted_block_idx + 1
- sorted_blocks.insert(nearest_sorted_block_index, block)
- return sorted_blocks
- def insert_child_blocks(
- block: LayoutParsingBlock,
- block_idx: int,
- sorted_blocks: List[LayoutParsingBlock],
- ) -> List[LayoutParsingBlock]:
- """
- Insert child blocks of a block into the sorted blocks list.
- Args:
- block: The parent block whose child blocks need to be inserted.
- block_idx: Index at which the parent block exists in the sorted blocks list.
- sorted_blocks: Sorted blocks list where the child blocks are to be inserted.
- Returns:
- sorted_blocks: Updated sorted blocks list after inserting child blocks.
- """
- if block.child_blocks:
- sub_blocks = block.get_child_blocks()
- sub_blocks.append(block)
- sub_blocks = sort_child_blocks(sub_blocks, block.direction)
- sorted_blocks[block_idx] = sub_blocks[0]
- for block in sub_blocks[1:]:
- block_idx += 1
- sorted_blocks.insert(block_idx, block)
- return sorted_blocks
- def sort_child_blocks(blocks, direction="horizontal") -> List[LayoutParsingBlock]:
- """
- Sort child blocks based on their bounding box coordinates.
- Args:
- blocks: A list of LayoutParsingBlock objects representing the child blocks.
- direction: Orientation of the blocks ('horizontal' or 'vertical'). Default is 'horizontal'.
- Returns:
- sorted_blocks: A sorted list of LayoutParsingBlock objects.
- """
- if direction == "horizontal":
- # from top to bottom
- blocks.sort(
- key=lambda x: (
- x.bbox[1], # y_min
- x.bbox[0], # x_min
- x.bbox[1] ** 2 + x.bbox[0] ** 2, # distance with (0,0)
- ),
- reverse=False,
- )
- else:
- # from right to left
- blocks.sort(
- key=lambda x: (
- x.bbox[0], # x_min
- x.bbox[1], # y_min
- x.bbox[1] ** 2 + x.bbox[0] ** 2, # distance with (0,0)
- ),
- reverse=True,
- )
- return blocks
- def _get_weights(label, dircetion="horizontal"):
- """Define weights based on the label and orientation."""
- if label == "doc_title":
- return (
- [1, 0.1, 0.1, 1] if dircetion == "horizontal" else [0.2, 0.1, 1, 1]
- ) # left-down , right-left
- elif label in [
- "paragraph_title",
- "table_title",
- "abstract",
- "image",
- "seal",
- "chart",
- "figure",
- ]:
- return [1, 1, 0.1, 1] # down
- else:
- return [1, 1, 1, 0.1] # up
- def _manhattan_distance(
- point1: Tuple[float, float],
- point2: Tuple[float, float],
- weight_x: float = 1.0,
- weight_y: float = 1.0,
- ) -> float:
- """
- Calculate the weighted Manhattan distance between two points.
- Args:
- point1 (Tuple[float, float]): The first point as (x, y).
- point2 (Tuple[float, float]): The second point as (x, y).
- weight_x (float): The weight for the x-axis distance. Default is 1.0.
- weight_y (float): The weight for the y-axis distance. Default is 1.0.
- Returns:
- float: The weighted Manhattan distance between the two points.
- """
- return weight_x * abs(point1[0] - point2[0]) + weight_y * abs(point1[1] - point2[1])
- def sort_blocks(blocks, median_width=None, reverse=False):
- """
- Sort blocks based on their y_min, x_min and distance with (0,0).
- Args:
- blocks (list): list of blocks to be sorted.
- median_width (int): the median width of the text blocks.
- reverse (bool, optional): whether to sort in descending order. Default is False.
- Returns:
- list: a list of sorted blocks.
- """
- if median_width is None:
- median_width = 1
- blocks.sort(
- key=lambda x: (
- x.bbox[1] // 10, # y_min
- x.bbox[0] // median_width, # x_min
- x.bbox[1] ** 2 + x.bbox[0] ** 2, # distance with (0,0)
- ),
- reverse=reverse,
- )
- return blocks
- def get_cut_blocks(
- blocks, cut_direction, cut_coordinates, overall_region_box, mask_labels=[]
- ):
- """
- Cut blocks based on the given cut direction and coordinates.
- Args:
- blocks (list): list of blocks to be cut.
- cut_direction (str): cut direction, either "horizontal" or "vertical".
- cut_coordinates (list): list of cut coordinates.
- overall_region_box (list): the overall region box that contains all blocks.
- Returns:
- list: a list of tuples containing the cutted blocks and their corresponding mean width。
- """
- cuted_list = []
- # filter out mask blocks,including header, footer, unordered and child_blocks
- # 0: horizontal, 1: vertical
- cut_aixis = 0 if cut_direction == "horizontal" else 1
- blocks.sort(key=lambda x: x.bbox[cut_aixis + 2])
- overall_max_axis_coordinate = overall_region_box[cut_aixis + 2]
- cut_coordinates.append(overall_max_axis_coordinate)
- cut_coordinates = list(set(cut_coordinates))
- cut_coordinates.sort()
- cut_idx = 0
- for cut_coordinate in cut_coordinates:
- group_blocks = []
- block_idx = cut_idx
- while block_idx < len(blocks):
- block = blocks[block_idx]
- if block.bbox[cut_aixis + 2] > cut_coordinate:
- break
- elif block.region_label not in mask_labels:
- group_blocks.append(block)
- block_idx += 1
- cut_idx = block_idx
- if group_blocks:
- cuted_list.append(group_blocks)
- return cuted_list
- def split_sub_region_blocks(
- blocks: List[LayoutParsingBlock],
- config: Dict,
- ) -> List:
- """
- Split blocks into sub regions based on the all layout region bbox.
- Args:
- blocks (List[LayoutParsingBlock]): A list of blocks.
- config (Dict): Configuration dictionary.
- Returns:
- List: A list of lists of blocks, each representing a sub region.
- """
- region_bbox = config.get("all_layout_region_box", None)
- x1, y1, x2, y2 = region_bbox
- region_width = x2 - x1
- region_height = y2 - y1
- if region_width < region_height:
- return [(blocks, region_bbox)]
- all_boxes = np.array([block.bbox for block in blocks])
- discontinuous = calculate_discontinuous_projection(all_boxes, direction="vertical")
- if len(discontinuous) > 1:
- cut_coordinates = []
- region_boxes = []
- current_interval = discontinuous[0]
- for x1, x2 in discontinuous[1:]:
- if x1 - current_interval[1] > 100:
- cut_coordinates.extend([x1, x2])
- region_boxes.append([x1, y1, x2, y2])
- current_interval = [x1, x2]
- region_blocks = get_cut_blocks(blocks, "vertical", cut_coordinates, region_bbox)
- return [region_info for region_info in zip(region_blocks, region_boxes)]
- else:
- return [(blocks, region_bbox)]
- def get_adjacent_blocks_by_direction(
- blocks: List[LayoutParsingBlock],
- block_idx: int,
- ref_block_idxes: List[int],
- iou_threshold,
- ) -> List:
- """
- Get the adjacent blocks with the same direction as the current block.
- Args:
- block (LayoutParsingBlock): The current block.
- blocks (List[LayoutParsingBlock]): A list of all blocks.
- ref_block_idxes (List[int]): A list of indices of reference blocks.
- iou_threshold (float): The IOU threshold to determine if two blocks are considered adjacent.
- Returns:
- Int: The index of the previous block with same direction.
- Int: The index of the following block with same direction.
- """
- min_prev_block_distance = float("inf")
- prev_block_index = None
- min_post_block_distance = float("inf")
- post_block_index = None
- block = blocks[block_idx]
- child_labels = [
- "vision_footnote",
- "sub_paragraph_title",
- "doc_title_text",
- "vision_title",
- ]
- # find the nearest text block with same direction to the current block
- for ref_block_idx in ref_block_idxes:
- ref_block = blocks[ref_block_idx]
- ref_block_direction = ref_block.direction
- if ref_block.region_label in child_labels:
- continue
- match_block_iou = calculate_projection_iou(
- block.bbox,
- ref_block.bbox,
- ref_block_direction,
- )
- child_match_distance_tolerance_len = block.short_side_length / 10
- if block.region_label == "vision":
- if ref_block.num_of_lines == 1:
- gap_tolerance_len = ref_block.short_side_length * 2
- else:
- gap_tolerance_len = block.short_side_length / 10
- else:
- gap_tolerance_len = block.short_side_length * 2
- if match_block_iou >= iou_threshold:
- prev_distance = (
- block.secondary_direction_start_coordinate
- - ref_block.secondary_direction_end_coordinate
- + child_match_distance_tolerance_len
- ) // 5 + ref_block.start_coordinate / 5000
- next_distance = (
- ref_block.secondary_direction_start_coordinate
- - block.secondary_direction_end_coordinate
- + child_match_distance_tolerance_len
- ) // 5 + ref_block.start_coordinate / 5000
- if (
- ref_block.secondary_direction_end_coordinate
- <= block.secondary_direction_start_coordinate
- + child_match_distance_tolerance_len
- and prev_distance < min_prev_block_distance
- ):
- min_prev_block_distance = prev_distance
- if (
- block.secondary_direction_start_coordinate
- - ref_block.secondary_direction_end_coordinate
- < gap_tolerance_len
- ):
- prev_block_index = ref_block_idx
- elif (
- ref_block.secondary_direction_start_coordinate
- > block.secondary_direction_end_coordinate
- - child_match_distance_tolerance_len
- and next_distance < min_post_block_distance
- ):
- min_post_block_distance = next_distance
- if (
- ref_block.secondary_direction_start_coordinate
- - block.secondary_direction_end_coordinate
- < gap_tolerance_len
- ):
- post_block_index = ref_block_idx
- diff_dist = abs(min_prev_block_distance - min_post_block_distance)
- # if the difference in distance is too large, only consider the nearest one
- if diff_dist * 5 > block.short_side_length:
- if min_prev_block_distance < min_post_block_distance:
- post_block_index = None
- else:
- prev_block_index = None
- return prev_block_index, post_block_index
- def update_doc_title_child_blocks(
- blocks: List[LayoutParsingBlock],
- block: LayoutParsingBlock,
- prev_idx: int,
- post_idx: int,
- config: dict,
- ) -> None:
- """
- Update the child blocks of a document title block.
- The child blocks need to meet the following conditions:
- 1. They must be adjacent
- 2. They must have the same direction as the parent block.
- 3. Their short side length should be less than 80% of the parent's short side length.
- 4. Their long side length should be less than 150% of the parent's long side length.
- 5. The child block must be text block.
- Args:
- blocks (List[LayoutParsingBlock]): overall blocks.
- block (LayoutParsingBlock): document title block.
- prev_idx (int): previous block index, None if not exist.
- post_idx (int): post block index, None if not exist.
- config (dict): configurations.
- Returns:
- None
- """
- for idx in [prev_idx, post_idx]:
- if idx is None:
- continue
- ref_block = blocks[idx]
- with_seem_direction = ref_block.direction == block.direction
- short_side_length_condition = (
- ref_block.short_side_length < block.short_side_length * 0.8
- )
- long_side_length_condition = (
- ref_block.long_side_length < block.long_side_length
- or ref_block.long_side_length > 1.5 * block.long_side_length
- )
- if (
- with_seem_direction
- and short_side_length_condition
- and long_side_length_condition
- and ref_block.num_of_lines < 3
- ):
- ref_block.region_label = "doc_title_text"
- block.append_child_block(ref_block)
- config["text_block_idxes"].remove(idx)
- def update_paragraph_title_child_blocks(
- blocks: List[LayoutParsingBlock],
- block: LayoutParsingBlock,
- prev_idx: int,
- post_idx: int,
- config: dict,
- ) -> None:
- """
- Update the child blocks of a paragraph title block.
- The child blocks need to meet the following conditions:
- 1. They must be adjacent
- 2. They must have the same direction as the parent block.
- 3. The child block must be paragraph title block.
- Args:
- blocks (List[LayoutParsingBlock]): overall blocks.
- block (LayoutParsingBlock): document title block.
- prev_idx (int): previous block index, None if not exist.
- post_idx (int): post block index, None if not exist.
- config (dict): configurations.
- Returns:
- None
- """
- paragraph_title_labels = config.get("paragraph_title_labels", [])
- for idx in [prev_idx, post_idx]:
- if idx is None:
- continue
- ref_block = blocks[idx]
- with_seem_direction = ref_block.direction == block.direction
- if with_seem_direction and ref_block.label in paragraph_title_labels:
- ref_block.region_label = "sub_paragraph_title"
- block.append_child_block(ref_block)
- config["paragraph_title_block_idxes"].remove(idx)
- def update_vision_child_blocks(
- blocks: List[LayoutParsingBlock],
- block: LayoutParsingBlock,
- ref_block_idxes: List[int],
- prev_idx: int,
- post_idx: int,
- config: dict,
- ) -> None:
- """
- Update the child blocks of a paragraph title block.
- The child blocks need to meet the following conditions:
- - For Both:
- 1. They must be adjacent
- 2. The child block must be vision_title or text block.
- - For vision_title:
- 1. The distance between the child block and the parent block should be less than 1/2 of the parent's height.
- - For text block:
- 1. The distance between the child block and the parent block should be less than 15.
- 2. The child short_side_length should be less than the parent's short side length.
- 3. The child long_side_length should be less than 50% of the parent's long side length.
- 4. The difference between their centers is very small.
- Args:
- blocks (List[LayoutParsingBlock]): overall blocks.
- block (LayoutParsingBlock): document title block.
- ref_block_idxes (List[int]): A list of indices of reference blocks.
- prev_idx (int): previous block index, None if not exist.
- post_idx (int): post block index, None if not exist.
- config (dict): configurations.
- Returns:
- None
- """
- vision_title_labels = config.get("vision_title_labels", [])
- text_labels = config.get("text_labels", [])
- for idx in [prev_idx, post_idx]:
- if idx is None:
- continue
- ref_block = blocks[idx]
- nearest_edge_distance = get_nearest_edge_distance(block.bbox, ref_block.bbox)
- block_center = block.get_centroid()
- ref_block_center = ref_block.get_centroid()
- if ref_block.label in vision_title_labels and nearest_edge_distance <= min(
- block.height * 0.5, ref_block.height * 2
- ):
- ref_block.region_label = "vision_title"
- block.append_child_block(ref_block)
- config["vision_title_block_idxes"].remove(idx)
- elif (
- nearest_edge_distance <= 15
- and ref_block.short_side_length < block.short_side_length
- and ref_block.long_side_length < 0.5 * block.long_side_length
- and ref_block.direction == block.direction
- and (
- abs(block_center[0] - ref_block_center[0]) < 10
- or (
- block.bbox[0] - ref_block.bbox[0] < 10
- and ref_block.num_of_lines == 1
- )
- or (
- block.bbox[2] - ref_block.bbox[2] < 10
- and ref_block.num_of_lines == 1
- )
- )
- ):
- has_vision_footnote = False
- if len(block.child_blocks) > 0:
- for child_block in block.child_blocks:
- if child_block.label in text_labels:
- has_vision_footnote = True
- if not has_vision_footnote:
- ref_block.region_label = "vision_footnote"
- block.append_child_block(ref_block)
- config["text_block_idxes"].remove(idx)
- def calculate_discontinuous_projection(boxes, direction="horizontal") -> List:
- """
- Calculate the discontinuous projection of boxes along the specified direction.
- Args:
- boxes (ndarray): Array of bounding boxes represented by [[x_min, y_min, x_max, y_max]].
- direction (str): Direction along which to perform the projection ('horizontal' or 'vertical').
- Returns:
- list: List of tuples representing the merged intervals.
- """
- if direction == "horizontal":
- intervals = boxes[:, [0, 2]]
- elif direction == "vertical":
- intervals = boxes[:, [1, 3]]
- else:
- raise ValueError("Direction must be 'horizontal' or 'vertical'")
- intervals = intervals[np.argsort(intervals[:, 0])]
- merged_intervals = []
- current_start, current_end = intervals[0]
- for start, end in intervals[1:]:
- if start <= current_end:
- current_end = max(current_end, end)
- else:
- merged_intervals.append((current_start, current_end))
- current_start, current_end = start, end
- merged_intervals.append((current_start, current_end))
- return merged_intervals
- def shrink_overlapping_boxes(
- boxes, direction="horizontal", min_threshold=0, max_threshold=0.1
- ) -> List:
- """
- Shrink overlapping boxes along the specified direction.
- Args:
- boxes (ndarray): Array of bounding boxes represented by [[x_min, y_min, x_max, y_max]].
- direction (str): Direction along which to perform the shrinking ('horizontal' or 'vertical').
- min_threshold (float): Minimum threshold for shrinking. Default is 0.
- max_threshold (float): Maximum threshold for shrinking. Default is 0.2.
- Returns:
- list: List of tuples representing the merged intervals.
- """
- current_block = boxes[0]
- for block in boxes[1:]:
- x1, y1, x2, y2 = current_block.bbox
- x1_prime, y1_prime, x2_prime, y2_prime = block.bbox
- cut_iou = calculate_projection_iou(
- current_block.bbox, block.bbox, direction=direction
- )
- match_iou = calculate_projection_iou(
- current_block.bbox,
- block.bbox,
- direction="horizontal" if direction == "vertical" else "vertical",
- )
- if direction == "vertical":
- if (
- (match_iou > 0 and cut_iou > min_threshold and cut_iou < max_threshold)
- or y2 == y1_prime
- or abs(y2 - y1_prime) <= 3
- ):
- overlap_y_min = max(y1, y1_prime)
- overlap_y_max = min(y2, y2_prime)
- split_y = int((overlap_y_min + overlap_y_max) / 2)
- overlap_y_min = split_y - 1
- overlap_y_max = split_y + 1
- current_block.bbox = [x1, y1, x2, overlap_y_min]
- block.bbox = [x1_prime, overlap_y_max, x2_prime, y2_prime]
- else:
- if (
- (match_iou > 0 and cut_iou > min_threshold and cut_iou < max_threshold)
- or x2 == x1_prime
- or abs(x2 - x1_prime) <= 3
- ):
- overlap_x_min = max(x1, x1_prime)
- overlap_x_max = min(x2, x2_prime)
- split_x = int((overlap_x_min + overlap_x_max) / 2)
- overlap_x_min = split_x - 1
- overlap_x_max = split_x + 1
- current_block.bbox = [x1, y1, overlap_x_min, y2]
- block.bbox = [overlap_x_max, y1_prime, x2_prime, y2_prime]
- current_block = block
- return boxes
|