| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- from ...base import BaseModel
- from ...base.utils.arg import CLIArgument
- from ...base.utils.subprocess import CompletedProcess
- from ....utils.misc import abspath
- from ....utils.errors import raise_unsupported_api_error
- class TSModel(BaseModel):
- """ TS Model """
- def train(self,
- batch_size: int=None,
- learning_rate: float=None,
- epochs_iters: int=None,
- ips: str=None,
- device: str='gpu',
- resume_path: str=None,
- dy2st: bool=False,
- amp: str='OFF',
- num_workers: int=None,
- use_vdl: bool=False,
- save_dir: str=None,
- **kwargs) -> CompletedProcess:
- """train self
- Args:
- batch_size (int, optional): the train batch size value. Defaults to None.
- learning_rate (float, optional): the train learning rate value. Defaults to None.
- epochs_iters (int, optional): the train epochs value. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- resume_path (str, optional): the checkpoint file path to resume training. Train from scratch if it is set
- to None. Defaults to None.
- dy2st (bool, optional): Enable dynamic to static. Defaults to False.
- amp (str, optional): the amp settings. Defaults to 'OFF'.
- num_workers (int, optional): the workers number. Defaults to None.
- use_vdl (bool, optional): enable VisualDL. Defaults to False.
- save_dir (str, optional): the directory path to save train output. Defaults to None.
- Returns:
- CompletedProcess: the result of training subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- if batch_size is not None:
- cli_args.append(CLIArgument('--batch_size', batch_size))
- if learning_rate is not None:
- cli_args.append(CLIArgument('--learning_rate', learning_rate))
- if epochs_iters is not None:
- cli_args.append(CLIArgument('--epoch', epochs_iters))
- if resume_path:
- raise ValueError("`resume_path` is not supported.")
- # No need to handle `ips`
- if amp is not None and amp != 'OFF':
- raise ValueError(f"`amp`={amp} is not supported.")
- if dy2st:
- raise ValueError(f"`dy2st`={dy2st} is not supported.")
- if use_vdl:
- raise ValueError(f"`use_vdl`={use_vdl} is not supported.")
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- cli_args.append(CLIArgument('--device', device_type))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join('output', 'train'))
- cli_args.append(CLIArgument('--save_dir', save_dir))
- # Benchmarking mode settings
- benchmark = kwargs.pop('benchmark', None)
- if benchmark is not None:
- envs = benchmark.get('env', None)
- num_workers = benchmark.get('num_workers', None)
- config.update_log_ranks(device)
- config.update_print_mem_info(benchmark.get('print_mem_info', True))
- if num_workers is not None:
- assert isinstance(num_workers,
- int), "num_workers must be an integer"
- cli_args.append(CLIArgument('--num_workers', num_workers))
- if envs is not None:
- for env_name, env_value in envs.items():
- os.environ[env_name] = env_value
- else:
- if num_workers is not None:
- cli_args.append(CLIArgument('--num_workers', num_workers))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.train(config_path, cli_args, device, ips,
- save_dir)
- def evaluate(self,
- weight_path: str,
- batch_size: int=None,
- ips: str=None,
- device: str='gpu',
- amp: str='OFF',
- num_workers: int=None,
- **kwargs) -> CompletedProcess:
- """evaluate self using specified weight
- Args:
- weight_path (str): the path of model weight file to be evaluated.
- batch_size (int, optional): the batch size value in evaluating. Defaults to None.
- ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None.
- device (str, optional): the running device. Defaults to 'gpu'.
- amp (str, optional): the AMP setting. Defaults to 'OFF'.
- num_workers (int, optional): the workers number in evaluating. Defaults to None.
- Returns:
- CompletedProcess: the result of evaluating subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- cli_args.append(CLIArgument('--checkpoints', weight_path))
- if batch_size is not None:
- if batch_size != 1:
- raise ValueError("Batch size other than 1 is not supported.")
- # No need to handle `ips`
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- cli_args.append(CLIArgument('--device', device_type))
- if amp is not None:
- if amp != 'OFF':
- raise ValueError(f"`amp`={amp} is not supported.")
- if num_workers is not None:
- cli_args.append(CLIArgument('--num_workers', num_workers))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- cp = self.runner.evaluate(config_path, cli_args, device, ips)
- return cp
- def predict(self,
- weight_path: str,
- input_path: str,
- device: str='gpu',
- save_dir: str=None,
- **kwargs) -> CompletedProcess:
- """predict using specified weight
- Args:
- weight_path (str): the path of model weight file used to predict.
- input_path (str): the path of image file to be predicted.
- device (str, optional): the running device. Defaults to 'gpu'.
- save_dir (str, optional): the directory path to save predict output. Defaults to None.
- Returns:
- CompletedProcess: the result of predicting subprocess execution.
- """
- config = self.config.copy()
- cli_args = []
- weight_path = abspath(weight_path)
- cli_args.append(CLIArgument('--checkpoints', weight_path))
- input_path = abspath(input_path)
- cli_args.append(CLIArgument('--csv_path', input_path))
- if device is not None:
- device_type, _ = self.runner.parse_device(device)
- cli_args.append(CLIArgument('--device', device_type))
- if save_dir is not None:
- save_dir = abspath(save_dir)
- else:
- # `save_dir` is None
- save_dir = abspath(os.path.join('output', 'predict'))
- cli_args.append(CLIArgument('--save_dir', save_dir))
- self._assert_empty_kwargs(kwargs)
- with self._create_new_config_file() as config_path:
- config.dump(config_path)
- return self.runner.predict(config_path, cli_args, device)
- def export(self, weight_path: str, save_dir: str=None, **kwargs):
- """export
- """
- raise_unsupported_api_error('export', self.__class__)
- def infer(self,
- model_dir: str,
- input_path: str,
- device: str='gpu',
- save_dir: str=None,
- **kwargs):
- """infer
- """
- raise_unsupported_api_error('infer', self.__class__)
- def compression(self,
- weight_path: str,
- batch_size=None,
- learning_rate=None,
- epochs_iters=None,
- device: str='gpu',
- use_vdl=True,
- save_dir=None,
- **kwargs):
- """compression
- """
- raise_unsupported_api_error('compression', self.__class__)
|