train_yolov3.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. # 环境变量配置,用于控制是否使用GPU
  2. # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
  3. import os
  4. os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7'
  5. from paddlex.det import transforms
  6. import paddlex as pdx
  7. # 下载和解压铝材缺陷检测数据集
  8. aluminum_dataset = 'https://bj.bcebos.com/paddlex/examples/industrial_quality_inspection/datasets/aluminum_inspection.tar.gz'
  9. pdx.utils.download_and_decompress(aluminum_dataset, path='./')
  10. # 定义训练和验证时的transforms
  11. # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html
  12. train_transforms = transforms.Compose([
  13. transforms.MixupImage(mixup_epoch=250), transforms.RandomDistort(),
  14. transforms.RandomExpand(), transforms.RandomCrop(), transforms.Resize(
  15. target_size=608, interp='RANDOM'), transforms.RandomHorizontalFlip(),
  16. transforms.Normalize()
  17. ])
  18. eval_transforms = transforms.Compose([
  19. transforms.Resize(
  20. target_size=608, interp='CUBIC'), transforms.Normalize()
  21. ])
  22. # 定义训练和验证所用的数据集
  23. # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-vocdetection
  24. train_dataset = pdx.datasets.VOCDetection(
  25. data_dir='aluminum_inspection',
  26. file_list='aluminum_inspection/train_list.txt',
  27. label_list='aluminum_inspection/labels.txt',
  28. transforms=train_transforms,
  29. shuffle=True)
  30. eval_dataset = pdx.datasets.VOCDetection(
  31. data_dir='aluminum_inspection',
  32. file_list='aluminum_inspection/val_list.txt',
  33. label_list='aluminum_inspection/labels.txt',
  34. transforms=eval_transforms)
  35. # 初始化模型,并进行训练
  36. # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html
  37. num_classes = len(train_dataset.labels)
  38. # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-yolov3
  39. model = pdx.det.YOLOv3(num_classes=num_classes, backbone='MobileNetV3_large')
  40. # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#train
  41. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  42. model.train(
  43. num_epochs=400,
  44. train_dataset=train_dataset,
  45. train_batch_size=64,
  46. eval_dataset=eval_dataset,
  47. learning_rate=0.001,
  48. lr_decay_epochs=[240, 320],
  49. save_dir='output/yolov3_mobilenetv3',
  50. use_vdl=True)