| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import numpy as np
- import time
- import math
- import tqdm
- from multiprocessing.pool import ThreadPool
- import paddle.fluid as fluid
- import paddlex.utils.logging as logging
- from paddlex.utils import seconds_to_hms
- import paddlex
- from paddlex.cv.transforms import arrange_transforms
- from paddlex.cv.datasets import generate_minibatch
- from collections import OrderedDict
- from .base import BaseAPI
- class BaseClassifier(BaseAPI):
- """构建分类器,并实现其训练、评估、预测和模型导出。
- Args:
- model_name (str): 分类器的模型名字,取值范围为['ResNet18',
- 'ResNet34', 'ResNet50', 'ResNet101',
- 'ResNet50_vd', 'ResNet101_vd', 'DarkNet53',
- 'MobileNetV1', 'MobileNetV2', 'Xception41',
- 'Xception65', 'Xception71']。默认为'ResNet50'。
- num_classes (int): 类别数。默认为1000。
- """
- def __init__(self, model_name='ResNet50', num_classes=1000):
- self.init_params = locals()
- super(BaseClassifier, self).__init__('classifier')
- if not hasattr(paddlex.cv.nets, str.lower(model_name)):
- raise Exception("ERROR: There's no model named {}.".format(
- model_name))
- self.model_name = model_name
- self.labels = None
- self.num_classes = num_classes
- self.fixed_input_shape = None
- def build_net(self, mode='train'):
- if self.__class__.__name__ == "AlexNet":
- assert self.fixed_input_shape is not None, "In AlexNet, input_shape should be defined, e.g. model = paddlex.cls.AlexNet(num_classes=1000, input_shape=[224, 224])"
- if self.fixed_input_shape is not None:
- input_shape = [
- None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0]
- ]
- image = fluid.data(
- dtype='float32', shape=input_shape, name='image')
- else:
- image = fluid.data(
- dtype='float32', shape=[None, 3, None, None], name='image')
- if mode != 'test':
- label = fluid.data(dtype='int64', shape=[None, 1], name='label')
- model = getattr(paddlex.cv.nets, str.lower(self.model_name))
- net_out = model(image, num_classes=self.num_classes)
- softmax_out = fluid.layers.softmax(net_out, use_cudnn=False)
- inputs = OrderedDict([('image', image)])
- outputs = OrderedDict([('predict', softmax_out)])
- if mode == 'test':
- self.interpretation_feats = OrderedDict([('logits', net_out)])
- if mode != 'test':
- cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
- avg_cost = fluid.layers.mean(cost)
- acc1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
- k = min(5, self.num_classes)
- acck = fluid.layers.accuracy(input=softmax_out, label=label, k=k)
- if mode == 'train':
- self.optimizer.minimize(avg_cost)
- inputs = OrderedDict([('image', image), ('label', label)])
- outputs = OrderedDict([('loss', avg_cost), ('acc1', acc1),
- ('acc{}'.format(k), acck)])
- if mode == 'eval':
- del outputs['loss']
- return inputs, outputs
- def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
- lr_decay_epochs, lr_decay_gamma,
- num_steps_each_epoch):
- boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
- values = [
- learning_rate * (lr_decay_gamma**i)
- for i in range(len(lr_decay_epochs) + 1)
- ]
- lr_decay = fluid.layers.piecewise_decay(
- boundaries=boundaries, values=values)
- if warmup_steps > 0:
- if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
- logging.error(
- "In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
- exit=False)
- logging.error(
- "See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
- exit=False)
- logging.error(
- "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
- format(lr_decay_epochs[0] * num_steps_each_epoch,
- warmup_steps // num_steps_each_epoch))
- lr_decay = fluid.layers.linear_lr_warmup(
- learning_rate=lr_decay,
- warmup_steps=warmup_steps,
- start_lr=warmup_start_lr,
- end_lr=learning_rate)
- optimizer = fluid.optimizer.Momentum(
- lr_decay,
- momentum=0.9,
- regularization=fluid.regularizer.L2Decay(1e-04))
- return optimizer
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- eval_metric_loss=0.05,
- early_stop=False,
- early_stop_patience=5,
- resume_checkpoint=None):
- """训练。
- Args:
- num_epochs (int): 训练迭代轮数。
- train_dataset (paddlex.datasets): 训练数据读取器。
- train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认值为64。
- eval_dataset (paddlex.datasets: 验证数据读取器。
- save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
- log_interval_steps (int): 训练日志输出间隔(单位:迭代步数)。默认为2。
- save_dir (str): 模型保存路径。
- pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
- 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
- optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
- fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
- learning_rate (float): 默认优化器的初始学习率。默认为0.025。
- warmup_steps(int): 学习率从warmup_start_lr上升至设定的learning_rate,所需的步数,默认为0
- warmup_start_lr(float): 学习率在warmup阶段时的起始值,默认为0.0
- lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[30, 60, 90]。
- lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
- use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
- sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
- 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
- eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
- early_stop (bool): 是否使用提前终止训练策略。默认值为False。
- early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
- 连续下降或持平,则终止训练。默认值为5。
- resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
- Raises:
- ValueError: 模型从inference model进行加载。
- """
- if not self.trainable:
- raise ValueError("Model is not trainable from load_model method.")
- self.labels = train_dataset.labels
- if optimizer is None:
- num_steps_each_epoch = train_dataset.num_samples // train_batch_size
- optimizer = self.default_optimizer(
- learning_rate=learning_rate,
- warmup_steps=warmup_steps,
- warmup_start_lr=warmup_start_lr,
- lr_decay_epochs=lr_decay_epochs,
- lr_decay_gamma=lr_decay_gamma,
- num_steps_each_epoch=num_steps_each_epoch)
- self.optimizer = optimizer
- # 构建训练、验证、预测网络
- self.build_program()
- # 初始化网络权重
- self.net_initialize(
- startup_prog=fluid.default_startup_program(),
- pretrain_weights=pretrain_weights,
- save_dir=save_dir,
- sensitivities_file=sensitivities_file,
- eval_metric_loss=eval_metric_loss,
- resume_checkpoint=resume_checkpoint)
- # 训练
- self.train_loop(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- use_vdl=use_vdl,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience)
- def evaluate(self,
- eval_dataset,
- batch_size=1,
- epoch_id=None,
- return_details=False):
- """评估。
- Args:
- eval_dataset (paddlex.datasets): 验证数据读取器。
- batch_size (int): 验证数据批大小。默认为1。
- epoch_id (int): 当前评估模型所在的训练轮数。
- return_details (bool): 是否返回详细信息。
- Returns:
- dict: 当return_details为False时,返回dict, 包含关键字:'acc1'、'acc5',
- 分别表示最大值的accuracy、前5个最大值的accuracy。
- tuple (metrics, eval_details): 当return_details为True时,增加返回dict,
- 包含关键字:'true_labels'、'pred_scores',分别代表真实类别id、每个类别的预测得分。
- """
- arrange_transforms(
- model_type=self.model_type,
- class_name=self.__class__.__name__,
- transforms=eval_dataset.transforms,
- mode='eval')
- data_generator = eval_dataset.generator(
- batch_size=batch_size, drop_last=False)
- k = min(5, self.num_classes)
- total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
- true_labels = list()
- pred_scores = list()
- if not hasattr(self, 'parallel_test_prog'):
- with fluid.scope_guard(self.scope):
- self.parallel_test_prog = fluid.CompiledProgram(
- self.test_prog).with_data_parallel(
- share_vars_from=self.parallel_train_prog)
- batch_size_each_gpu = self._get_single_card_bs(batch_size)
- logging.info(
- "Start to evaluating(total_samples={}, total_steps={})...".format(
- eval_dataset.num_samples, total_steps))
- for step, data in tqdm.tqdm(
- enumerate(data_generator()), total=total_steps):
- images = np.array([d[0] for d in data]).astype('float32')
- labels = [d[1] for d in data]
- num_samples = images.shape[0]
- if num_samples < batch_size:
- num_pad_samples = batch_size - num_samples
- pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
- images = np.concatenate([images, pad_images])
- with fluid.scope_guard(self.scope):
- outputs = self.exe.run(
- self.parallel_test_prog,
- feed={'image': images},
- fetch_list=list(self.test_outputs.values()))
- outputs = [outputs[0][:num_samples]]
- true_labels.extend(labels)
- pred_scores.extend(outputs[0].tolist())
- logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
- 1, total_steps))
- pred_top1_label = np.argsort(pred_scores)[:, -1]
- pred_topk_label = np.argsort(pred_scores)[:, -k:]
- acc1 = sum(pred_top1_label == true_labels) / len(true_labels)
- acck = sum(
- [np.isin(x, y)
- for x, y in zip(true_labels, pred_topk_label)]) / len(true_labels)
- metrics = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck)])
- if return_details:
- eval_details = {
- 'true_labels': true_labels,
- 'pred_scores': pred_scores
- }
- return metrics, eval_details
- return metrics
- @staticmethod
- def _preprocess(images,
- transforms,
- model_type,
- class_name,
- thread_pool=None):
- arrange_transforms(
- model_type=model_type,
- class_name=class_name,
- transforms=transforms,
- mode='test')
- if thread_pool is not None:
- batch_data = thread_pool.map(transforms, images)
- else:
- batch_data = list()
- for image in images:
- batch_data.append(transforms(image))
- padding_batch = generate_minibatch(batch_data)
- im = np.array([data[0] for data in padding_batch])
- return im
- @staticmethod
- def _postprocess(results, true_topk, labels):
- preds = list()
- for i, pred in enumerate(results[0]):
- pred_label = np.argsort(pred)[::-1][:true_topk]
- preds.append([{
- 'category_id': l,
- 'category': labels[l],
- 'score': results[0][i][l]
- } for l in pred_label])
- return preds
- def predict(self, img_file, transforms=None, topk=1):
- """预测。
- Args:
- img_file (str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。
- transforms (paddlex.cls.transforms): 数据预处理操作。
- topk (int): 预测时前k个最大值。
- Returns:
- list: 其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
- 分别对应预测类别id、预测类别标签、预测得分。
- """
- if transforms is None and not hasattr(self, 'test_transforms'):
- raise Exception("transforms need to be defined, now is None.")
- true_topk = min(self.num_classes, topk)
- if isinstance(img_file, (str, np.ndarray)):
- images = [img_file]
- else:
- raise Exception("img_file must be str/np.ndarray")
- if transforms is None:
- transforms = self.test_transforms
- im = BaseClassifier._preprocess(images, transforms, self.model_type,
- self.__class__.__name__)
- with fluid.scope_guard(self.scope):
- result = self.exe.run(self.test_prog,
- feed={'image': im},
- fetch_list=list(self.test_outputs.values()),
- use_program_cache=True)
- preds = BaseClassifier._postprocess(result, true_topk, self.labels)
- return preds[0]
- def batch_predict(self, img_file_list, transforms=None, topk=1):
- """预测。
- Args:
- img_file_list(list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径
- 也可以是解码后的排列格式为(H,W,C)且类型为float32且为BGR格式的数组。
- transforms (paddlex.cls.transforms): 数据预处理操作。
- topk (int): 预测时前k个最大值。
- Returns:
- list: 每个元素都为列表,表示各图像的预测结果。在各图像的预测列表中,其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
- 分别对应预测类别id、预测类别标签、预测得分。
- """
- if transforms is None and not hasattr(self, 'test_transforms'):
- raise Exception("transforms need to be defined, now is None.")
- true_topk = min(self.num_classes, topk)
- if not isinstance(img_file_list, (list, tuple)):
- raise Exception("im_file must be list/tuple")
- if transforms is None:
- transforms = self.test_transforms
- im = BaseClassifier._preprocess(
- img_file_list, transforms, self.model_type,
- self.__class__.__name__, self.thread_pool)
- with fluid.scope_guard(self.scope):
- result = self.exe.run(self.test_prog,
- feed={'image': im},
- fetch_list=list(self.test_outputs.values()),
- use_program_cache=True)
- preds = BaseClassifier._postprocess(result, true_topk, self.labels)
- return preds
- class ResNet18(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(ResNet18, self).__init__(
- model_name='ResNet18', num_classes=num_classes)
- class ResNet34(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(ResNet34, self).__init__(
- model_name='ResNet34', num_classes=num_classes)
- class ResNet50(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(ResNet50, self).__init__(
- model_name='ResNet50', num_classes=num_classes)
- class ResNet101(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(ResNet101, self).__init__(
- model_name='ResNet101', num_classes=num_classes)
- class ResNet50_vd(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(ResNet50_vd, self).__init__(
- model_name='ResNet50_vd', num_classes=num_classes)
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=64,
- eval_dataset=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='BAIDU10W',
- optimizer=None,
- learning_rate=0.025,
- warmup_steps=0,
- warmup_start_lr=0.0,
- lr_decay_epochs=[30, 60, 90],
- lr_decay_gamma=0.1,
- use_vdl=False,
- sensitivities_file=None,
- eval_metric_loss=0.05,
- early_stop=False,
- early_stop_patience=5,
- resume_checkpoint=None):
- """训练。
- Args:
- num_epochs (int): 训练迭代轮数。
- train_dataset (paddlex.datasets): 训练数据读取器。
- train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认值为64。
- eval_dataset (paddlex.datasets: 验证数据读取器。
- save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
- log_interval_steps (int): 训练日志输出间隔(单位:迭代步数)。默认为2。
- save_dir (str): 模型保存路径。
- pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
- 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。若为'BAIDU10W',则自动下载百度自研10万类预训练。默认为'BAIDU10W'。
- optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
- fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
- learning_rate (float): 默认优化器的初始学习率。默认为0.025。
- warmup_steps(int): 学习率从warmup_start_lr上升至设定的learning_rate,所需的步数,默认为0
- warmup_start_lr(float): 学习率在warmup阶段时的起始值,默认为0.0
- lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[30, 60, 90]。
- lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
- use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
- sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
- 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
- eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
- early_stop (bool): 是否使用提前终止训练策略。默认值为False。
- early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
- 连续下降或持平,则终止训练。默认值为5。
- resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
- Raises:
- ValueError: 模型从inference model进行加载。
- """
- return super(ResNet50_vd, self).train(
- num_epochs, train_dataset, train_batch_size, eval_dataset,
- save_interval_epochs, log_interval_steps, save_dir,
- pretrain_weights, optimizer, learning_rate, warmup_steps,
- warmup_start_lr, lr_decay_epochs, lr_decay_gamma, use_vdl,
- sensitivities_file, eval_metric_loss, early_stop,
- early_stop_patience, resume_checkpoint)
- class ResNet101_vd(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(ResNet101_vd, self).__init__(
- model_name='ResNet101_vd', num_classes=num_classes)
- class ResNet50_vd_ssld(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(ResNet50_vd_ssld, self).__init__(
- model_name='ResNet50_vd_ssld', num_classes=num_classes)
- class ResNet101_vd_ssld(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(ResNet101_vd_ssld, self).__init__(
- model_name='ResNet101_vd_ssld', num_classes=num_classes)
- class DarkNet53(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(DarkNet53, self).__init__(
- model_name='DarkNet53', num_classes=num_classes)
- class MobileNetV1(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(MobileNetV1, self).__init__(
- model_name='MobileNetV1', num_classes=num_classes)
- class MobileNetV2(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(MobileNetV2, self).__init__(
- model_name='MobileNetV2', num_classes=num_classes)
- class MobileNetV3_small(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(MobileNetV3_small, self).__init__(
- model_name='MobileNetV3_small', num_classes=num_classes)
- class MobileNetV3_large(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(MobileNetV3_large, self).__init__(
- model_name='MobileNetV3_large', num_classes=num_classes)
- class MobileNetV3_small_ssld(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(MobileNetV3_small_ssld, self).__init__(
- model_name='MobileNetV3_small_ssld', num_classes=num_classes)
- class MobileNetV3_large_ssld(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(MobileNetV3_large_ssld, self).__init__(
- model_name='MobileNetV3_large_ssld', num_classes=num_classes)
- class Xception65(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(Xception65, self).__init__(
- model_name='Xception65', num_classes=num_classes)
- class Xception41(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(Xception41, self).__init__(
- model_name='Xception41', num_classes=num_classes)
- class DenseNet121(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(DenseNet121, self).__init__(
- model_name='DenseNet121', num_classes=num_classes)
- class DenseNet161(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(DenseNet161, self).__init__(
- model_name='DenseNet161', num_classes=num_classes)
- class DenseNet201(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(DenseNet201, self).__init__(
- model_name='DenseNet201', num_classes=num_classes)
- class ShuffleNetV2(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(ShuffleNetV2, self).__init__(
- model_name='ShuffleNetV2', num_classes=num_classes)
- class HRNet_W18(BaseClassifier):
- def __init__(self, num_classes=1000):
- super(HRNet_W18, self).__init__(
- model_name='HRNet_W18', num_classes=num_classes)
- class AlexNet(BaseClassifier):
- def __init__(self, num_classes=1000, input_shape=None):
- super(AlexNet, self).__init__(
- model_name='AlexNet', num_classes=num_classes)
- self.fixed_input_shape = input_shape
|