classifier.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import numpy as np
  16. import time
  17. import math
  18. import tqdm
  19. from multiprocessing.pool import ThreadPool
  20. import paddle.fluid as fluid
  21. import paddlex.utils.logging as logging
  22. from paddlex.utils import seconds_to_hms
  23. import paddlex
  24. from paddlex.cv.transforms import arrange_transforms
  25. from paddlex.cv.datasets import generate_minibatch
  26. from collections import OrderedDict
  27. from .base import BaseAPI
  28. class BaseClassifier(BaseAPI):
  29. """构建分类器,并实现其训练、评估、预测和模型导出。
  30. Args:
  31. model_name (str): 分类器的模型名字,取值范围为['ResNet18',
  32. 'ResNet34', 'ResNet50', 'ResNet101',
  33. 'ResNet50_vd', 'ResNet101_vd', 'DarkNet53',
  34. 'MobileNetV1', 'MobileNetV2', 'Xception41',
  35. 'Xception65', 'Xception71']。默认为'ResNet50'。
  36. num_classes (int): 类别数。默认为1000。
  37. """
  38. def __init__(self, model_name='ResNet50', num_classes=1000):
  39. self.init_params = locals()
  40. super(BaseClassifier, self).__init__('classifier')
  41. if not hasattr(paddlex.cv.nets, str.lower(model_name)):
  42. raise Exception("ERROR: There's no model named {}.".format(
  43. model_name))
  44. self.model_name = model_name
  45. self.labels = None
  46. self.num_classes = num_classes
  47. self.fixed_input_shape = None
  48. def build_net(self, mode='train'):
  49. if self.__class__.__name__ == "AlexNet":
  50. assert self.fixed_input_shape is not None, "In AlexNet, input_shape should be defined, e.g. model = paddlex.cls.AlexNet(num_classes=1000, input_shape=[224, 224])"
  51. if self.fixed_input_shape is not None:
  52. input_shape = [
  53. None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0]
  54. ]
  55. image = fluid.data(
  56. dtype='float32', shape=input_shape, name='image')
  57. else:
  58. image = fluid.data(
  59. dtype='float32', shape=[None, 3, None, None], name='image')
  60. if mode != 'test':
  61. label = fluid.data(dtype='int64', shape=[None, 1], name='label')
  62. model = getattr(paddlex.cv.nets, str.lower(self.model_name))
  63. net_out = model(image, num_classes=self.num_classes)
  64. softmax_out = fluid.layers.softmax(net_out, use_cudnn=False)
  65. inputs = OrderedDict([('image', image)])
  66. outputs = OrderedDict([('predict', softmax_out)])
  67. if mode == 'test':
  68. self.interpretation_feats = OrderedDict([('logits', net_out)])
  69. if mode != 'test':
  70. cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
  71. avg_cost = fluid.layers.mean(cost)
  72. acc1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
  73. k = min(5, self.num_classes)
  74. acck = fluid.layers.accuracy(input=softmax_out, label=label, k=k)
  75. if mode == 'train':
  76. self.optimizer.minimize(avg_cost)
  77. inputs = OrderedDict([('image', image), ('label', label)])
  78. outputs = OrderedDict([('loss', avg_cost), ('acc1', acc1),
  79. ('acc{}'.format(k), acck)])
  80. if mode == 'eval':
  81. del outputs['loss']
  82. return inputs, outputs
  83. def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
  84. lr_decay_epochs, lr_decay_gamma,
  85. num_steps_each_epoch):
  86. boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
  87. values = [
  88. learning_rate * (lr_decay_gamma**i)
  89. for i in range(len(lr_decay_epochs) + 1)
  90. ]
  91. lr_decay = fluid.layers.piecewise_decay(
  92. boundaries=boundaries, values=values)
  93. if warmup_steps > 0:
  94. if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
  95. logging.error(
  96. "In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
  97. exit=False)
  98. logging.error(
  99. "See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
  100. exit=False)
  101. logging.error(
  102. "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
  103. format(lr_decay_epochs[0] * num_steps_each_epoch,
  104. warmup_steps // num_steps_each_epoch))
  105. lr_decay = fluid.layers.linear_lr_warmup(
  106. learning_rate=lr_decay,
  107. warmup_steps=warmup_steps,
  108. start_lr=warmup_start_lr,
  109. end_lr=learning_rate)
  110. optimizer = fluid.optimizer.Momentum(
  111. lr_decay,
  112. momentum=0.9,
  113. regularization=fluid.regularizer.L2Decay(1e-04))
  114. return optimizer
  115. def train(self,
  116. num_epochs,
  117. train_dataset,
  118. train_batch_size=64,
  119. eval_dataset=None,
  120. save_interval_epochs=1,
  121. log_interval_steps=2,
  122. save_dir='output',
  123. pretrain_weights='IMAGENET',
  124. optimizer=None,
  125. learning_rate=0.025,
  126. warmup_steps=0,
  127. warmup_start_lr=0.0,
  128. lr_decay_epochs=[30, 60, 90],
  129. lr_decay_gamma=0.1,
  130. use_vdl=False,
  131. sensitivities_file=None,
  132. eval_metric_loss=0.05,
  133. early_stop=False,
  134. early_stop_patience=5,
  135. resume_checkpoint=None):
  136. """训练。
  137. Args:
  138. num_epochs (int): 训练迭代轮数。
  139. train_dataset (paddlex.datasets): 训练数据读取器。
  140. train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认值为64。
  141. eval_dataset (paddlex.datasets: 验证数据读取器。
  142. save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
  143. log_interval_steps (int): 训练日志输出间隔(单位:迭代步数)。默认为2。
  144. save_dir (str): 模型保存路径。
  145. pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
  146. 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
  147. optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
  148. fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
  149. learning_rate (float): 默认优化器的初始学习率。默认为0.025。
  150. warmup_steps(int): 学习率从warmup_start_lr上升至设定的learning_rate,所需的步数,默认为0
  151. warmup_start_lr(float): 学习率在warmup阶段时的起始值,默认为0.0
  152. lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[30, 60, 90]。
  153. lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
  154. use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
  155. sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
  156. 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
  157. eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
  158. early_stop (bool): 是否使用提前终止训练策略。默认值为False。
  159. early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
  160. 连续下降或持平,则终止训练。默认值为5。
  161. resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
  162. Raises:
  163. ValueError: 模型从inference model进行加载。
  164. """
  165. if not self.trainable:
  166. raise ValueError("Model is not trainable from load_model method.")
  167. self.labels = train_dataset.labels
  168. if optimizer is None:
  169. num_steps_each_epoch = train_dataset.num_samples // train_batch_size
  170. optimizer = self.default_optimizer(
  171. learning_rate=learning_rate,
  172. warmup_steps=warmup_steps,
  173. warmup_start_lr=warmup_start_lr,
  174. lr_decay_epochs=lr_decay_epochs,
  175. lr_decay_gamma=lr_decay_gamma,
  176. num_steps_each_epoch=num_steps_each_epoch)
  177. self.optimizer = optimizer
  178. # 构建训练、验证、预测网络
  179. self.build_program()
  180. # 初始化网络权重
  181. self.net_initialize(
  182. startup_prog=fluid.default_startup_program(),
  183. pretrain_weights=pretrain_weights,
  184. save_dir=save_dir,
  185. sensitivities_file=sensitivities_file,
  186. eval_metric_loss=eval_metric_loss,
  187. resume_checkpoint=resume_checkpoint)
  188. # 训练
  189. self.train_loop(
  190. num_epochs=num_epochs,
  191. train_dataset=train_dataset,
  192. train_batch_size=train_batch_size,
  193. eval_dataset=eval_dataset,
  194. save_interval_epochs=save_interval_epochs,
  195. log_interval_steps=log_interval_steps,
  196. save_dir=save_dir,
  197. use_vdl=use_vdl,
  198. early_stop=early_stop,
  199. early_stop_patience=early_stop_patience)
  200. def evaluate(self,
  201. eval_dataset,
  202. batch_size=1,
  203. epoch_id=None,
  204. return_details=False):
  205. """评估。
  206. Args:
  207. eval_dataset (paddlex.datasets): 验证数据读取器。
  208. batch_size (int): 验证数据批大小。默认为1。
  209. epoch_id (int): 当前评估模型所在的训练轮数。
  210. return_details (bool): 是否返回详细信息。
  211. Returns:
  212. dict: 当return_details为False时,返回dict, 包含关键字:'acc1'、'acc5',
  213. 分别表示最大值的accuracy、前5个最大值的accuracy。
  214. tuple (metrics, eval_details): 当return_details为True时,增加返回dict,
  215. 包含关键字:'true_labels'、'pred_scores',分别代表真实类别id、每个类别的预测得分。
  216. """
  217. arrange_transforms(
  218. model_type=self.model_type,
  219. class_name=self.__class__.__name__,
  220. transforms=eval_dataset.transforms,
  221. mode='eval')
  222. data_generator = eval_dataset.generator(
  223. batch_size=batch_size, drop_last=False)
  224. k = min(5, self.num_classes)
  225. total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
  226. true_labels = list()
  227. pred_scores = list()
  228. if not hasattr(self, 'parallel_test_prog'):
  229. with fluid.scope_guard(self.scope):
  230. self.parallel_test_prog = fluid.CompiledProgram(
  231. self.test_prog).with_data_parallel(
  232. share_vars_from=self.parallel_train_prog)
  233. batch_size_each_gpu = self._get_single_card_bs(batch_size)
  234. logging.info(
  235. "Start to evaluating(total_samples={}, total_steps={})...".format(
  236. eval_dataset.num_samples, total_steps))
  237. for step, data in tqdm.tqdm(
  238. enumerate(data_generator()), total=total_steps):
  239. images = np.array([d[0] for d in data]).astype('float32')
  240. labels = [d[1] for d in data]
  241. num_samples = images.shape[0]
  242. if num_samples < batch_size:
  243. num_pad_samples = batch_size - num_samples
  244. pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
  245. images = np.concatenate([images, pad_images])
  246. with fluid.scope_guard(self.scope):
  247. outputs = self.exe.run(
  248. self.parallel_test_prog,
  249. feed={'image': images},
  250. fetch_list=list(self.test_outputs.values()))
  251. outputs = [outputs[0][:num_samples]]
  252. true_labels.extend(labels)
  253. pred_scores.extend(outputs[0].tolist())
  254. logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
  255. 1, total_steps))
  256. pred_top1_label = np.argsort(pred_scores)[:, -1]
  257. pred_topk_label = np.argsort(pred_scores)[:, -k:]
  258. acc1 = sum(pred_top1_label == true_labels) / len(true_labels)
  259. acck = sum(
  260. [np.isin(x, y)
  261. for x, y in zip(true_labels, pred_topk_label)]) / len(true_labels)
  262. metrics = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck)])
  263. if return_details:
  264. eval_details = {
  265. 'true_labels': true_labels,
  266. 'pred_scores': pred_scores
  267. }
  268. return metrics, eval_details
  269. return metrics
  270. @staticmethod
  271. def _preprocess(images,
  272. transforms,
  273. model_type,
  274. class_name,
  275. thread_pool=None):
  276. arrange_transforms(
  277. model_type=model_type,
  278. class_name=class_name,
  279. transforms=transforms,
  280. mode='test')
  281. if thread_pool is not None:
  282. batch_data = thread_pool.map(transforms, images)
  283. else:
  284. batch_data = list()
  285. for image in images:
  286. batch_data.append(transforms(image))
  287. padding_batch = generate_minibatch(batch_data)
  288. im = np.array([data[0] for data in padding_batch])
  289. return im
  290. @staticmethod
  291. def _postprocess(results, true_topk, labels):
  292. preds = list()
  293. for i, pred in enumerate(results[0]):
  294. pred_label = np.argsort(pred)[::-1][:true_topk]
  295. preds.append([{
  296. 'category_id': l,
  297. 'category': labels[l],
  298. 'score': results[0][i][l]
  299. } for l in pred_label])
  300. return preds
  301. def predict(self, img_file, transforms=None, topk=1):
  302. """预测。
  303. Args:
  304. img_file (str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。
  305. transforms (paddlex.cls.transforms): 数据预处理操作。
  306. topk (int): 预测时前k个最大值。
  307. Returns:
  308. list: 其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
  309. 分别对应预测类别id、预测类别标签、预测得分。
  310. """
  311. if transforms is None and not hasattr(self, 'test_transforms'):
  312. raise Exception("transforms need to be defined, now is None.")
  313. true_topk = min(self.num_classes, topk)
  314. if isinstance(img_file, (str, np.ndarray)):
  315. images = [img_file]
  316. else:
  317. raise Exception("img_file must be str/np.ndarray")
  318. if transforms is None:
  319. transforms = self.test_transforms
  320. im = BaseClassifier._preprocess(images, transforms, self.model_type,
  321. self.__class__.__name__)
  322. with fluid.scope_guard(self.scope):
  323. result = self.exe.run(self.test_prog,
  324. feed={'image': im},
  325. fetch_list=list(self.test_outputs.values()),
  326. use_program_cache=True)
  327. preds = BaseClassifier._postprocess(result, true_topk, self.labels)
  328. return preds[0]
  329. def batch_predict(self, img_file_list, transforms=None, topk=1):
  330. """预测。
  331. Args:
  332. img_file_list(list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径
  333. 也可以是解码后的排列格式为(H,W,C)且类型为float32且为BGR格式的数组。
  334. transforms (paddlex.cls.transforms): 数据预处理操作。
  335. topk (int): 预测时前k个最大值。
  336. Returns:
  337. list: 每个元素都为列表,表示各图像的预测结果。在各图像的预测列表中,其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
  338. 分别对应预测类别id、预测类别标签、预测得分。
  339. """
  340. if transforms is None and not hasattr(self, 'test_transforms'):
  341. raise Exception("transforms need to be defined, now is None.")
  342. true_topk = min(self.num_classes, topk)
  343. if not isinstance(img_file_list, (list, tuple)):
  344. raise Exception("im_file must be list/tuple")
  345. if transforms is None:
  346. transforms = self.test_transforms
  347. im = BaseClassifier._preprocess(
  348. img_file_list, transforms, self.model_type,
  349. self.__class__.__name__, self.thread_pool)
  350. with fluid.scope_guard(self.scope):
  351. result = self.exe.run(self.test_prog,
  352. feed={'image': im},
  353. fetch_list=list(self.test_outputs.values()),
  354. use_program_cache=True)
  355. preds = BaseClassifier._postprocess(result, true_topk, self.labels)
  356. return preds
  357. class ResNet18(BaseClassifier):
  358. def __init__(self, num_classes=1000):
  359. super(ResNet18, self).__init__(
  360. model_name='ResNet18', num_classes=num_classes)
  361. class ResNet34(BaseClassifier):
  362. def __init__(self, num_classes=1000):
  363. super(ResNet34, self).__init__(
  364. model_name='ResNet34', num_classes=num_classes)
  365. class ResNet50(BaseClassifier):
  366. def __init__(self, num_classes=1000):
  367. super(ResNet50, self).__init__(
  368. model_name='ResNet50', num_classes=num_classes)
  369. class ResNet101(BaseClassifier):
  370. def __init__(self, num_classes=1000):
  371. super(ResNet101, self).__init__(
  372. model_name='ResNet101', num_classes=num_classes)
  373. class ResNet50_vd(BaseClassifier):
  374. def __init__(self, num_classes=1000):
  375. super(ResNet50_vd, self).__init__(
  376. model_name='ResNet50_vd', num_classes=num_classes)
  377. def train(self,
  378. num_epochs,
  379. train_dataset,
  380. train_batch_size=64,
  381. eval_dataset=None,
  382. save_interval_epochs=1,
  383. log_interval_steps=2,
  384. save_dir='output',
  385. pretrain_weights='BAIDU10W',
  386. optimizer=None,
  387. learning_rate=0.025,
  388. warmup_steps=0,
  389. warmup_start_lr=0.0,
  390. lr_decay_epochs=[30, 60, 90],
  391. lr_decay_gamma=0.1,
  392. use_vdl=False,
  393. sensitivities_file=None,
  394. eval_metric_loss=0.05,
  395. early_stop=False,
  396. early_stop_patience=5,
  397. resume_checkpoint=None):
  398. """训练。
  399. Args:
  400. num_epochs (int): 训练迭代轮数。
  401. train_dataset (paddlex.datasets): 训练数据读取器。
  402. train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认值为64。
  403. eval_dataset (paddlex.datasets: 验证数据读取器。
  404. save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
  405. log_interval_steps (int): 训练日志输出间隔(单位:迭代步数)。默认为2。
  406. save_dir (str): 模型保存路径。
  407. pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
  408. 则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。若为'BAIDU10W',则自动下载百度自研10万类预训练。默认为'BAIDU10W'。
  409. optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
  410. fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
  411. learning_rate (float): 默认优化器的初始学习率。默认为0.025。
  412. warmup_steps(int): 学习率从warmup_start_lr上升至设定的learning_rate,所需的步数,默认为0
  413. warmup_start_lr(float): 学习率在warmup阶段时的起始值,默认为0.0
  414. lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[30, 60, 90]。
  415. lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
  416. use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
  417. sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
  418. 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
  419. eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
  420. early_stop (bool): 是否使用提前终止训练策略。默认值为False。
  421. early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
  422. 连续下降或持平,则终止训练。默认值为5。
  423. resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
  424. Raises:
  425. ValueError: 模型从inference model进行加载。
  426. """
  427. return super(ResNet50_vd, self).train(
  428. num_epochs, train_dataset, train_batch_size, eval_dataset,
  429. save_interval_epochs, log_interval_steps, save_dir,
  430. pretrain_weights, optimizer, learning_rate, warmup_steps,
  431. warmup_start_lr, lr_decay_epochs, lr_decay_gamma, use_vdl,
  432. sensitivities_file, eval_metric_loss, early_stop,
  433. early_stop_patience, resume_checkpoint)
  434. class ResNet101_vd(BaseClassifier):
  435. def __init__(self, num_classes=1000):
  436. super(ResNet101_vd, self).__init__(
  437. model_name='ResNet101_vd', num_classes=num_classes)
  438. class ResNet50_vd_ssld(BaseClassifier):
  439. def __init__(self, num_classes=1000):
  440. super(ResNet50_vd_ssld, self).__init__(
  441. model_name='ResNet50_vd_ssld', num_classes=num_classes)
  442. class ResNet101_vd_ssld(BaseClassifier):
  443. def __init__(self, num_classes=1000):
  444. super(ResNet101_vd_ssld, self).__init__(
  445. model_name='ResNet101_vd_ssld', num_classes=num_classes)
  446. class DarkNet53(BaseClassifier):
  447. def __init__(self, num_classes=1000):
  448. super(DarkNet53, self).__init__(
  449. model_name='DarkNet53', num_classes=num_classes)
  450. class MobileNetV1(BaseClassifier):
  451. def __init__(self, num_classes=1000):
  452. super(MobileNetV1, self).__init__(
  453. model_name='MobileNetV1', num_classes=num_classes)
  454. class MobileNetV2(BaseClassifier):
  455. def __init__(self, num_classes=1000):
  456. super(MobileNetV2, self).__init__(
  457. model_name='MobileNetV2', num_classes=num_classes)
  458. class MobileNetV3_small(BaseClassifier):
  459. def __init__(self, num_classes=1000):
  460. super(MobileNetV3_small, self).__init__(
  461. model_name='MobileNetV3_small', num_classes=num_classes)
  462. class MobileNetV3_large(BaseClassifier):
  463. def __init__(self, num_classes=1000):
  464. super(MobileNetV3_large, self).__init__(
  465. model_name='MobileNetV3_large', num_classes=num_classes)
  466. class MobileNetV3_small_ssld(BaseClassifier):
  467. def __init__(self, num_classes=1000):
  468. super(MobileNetV3_small_ssld, self).__init__(
  469. model_name='MobileNetV3_small_ssld', num_classes=num_classes)
  470. class MobileNetV3_large_ssld(BaseClassifier):
  471. def __init__(self, num_classes=1000):
  472. super(MobileNetV3_large_ssld, self).__init__(
  473. model_name='MobileNetV3_large_ssld', num_classes=num_classes)
  474. class Xception65(BaseClassifier):
  475. def __init__(self, num_classes=1000):
  476. super(Xception65, self).__init__(
  477. model_name='Xception65', num_classes=num_classes)
  478. class Xception41(BaseClassifier):
  479. def __init__(self, num_classes=1000):
  480. super(Xception41, self).__init__(
  481. model_name='Xception41', num_classes=num_classes)
  482. class DenseNet121(BaseClassifier):
  483. def __init__(self, num_classes=1000):
  484. super(DenseNet121, self).__init__(
  485. model_name='DenseNet121', num_classes=num_classes)
  486. class DenseNet161(BaseClassifier):
  487. def __init__(self, num_classes=1000):
  488. super(DenseNet161, self).__init__(
  489. model_name='DenseNet161', num_classes=num_classes)
  490. class DenseNet201(BaseClassifier):
  491. def __init__(self, num_classes=1000):
  492. super(DenseNet201, self).__init__(
  493. model_name='DenseNet201', num_classes=num_classes)
  494. class ShuffleNetV2(BaseClassifier):
  495. def __init__(self, num_classes=1000):
  496. super(ShuffleNetV2, self).__init__(
  497. model_name='ShuffleNetV2', num_classes=num_classes)
  498. class HRNet_W18(BaseClassifier):
  499. def __init__(self, num_classes=1000):
  500. super(HRNet_W18, self).__init__(
  501. model_name='HRNet_W18', num_classes=num_classes)
  502. class AlexNet(BaseClassifier):
  503. def __init__(self, num_classes=1000, input_shape=None):
  504. super(AlexNet, self).__init__(
  505. model_name='AlexNet', num_classes=num_classes)
  506. self.fixed_input_shape = input_shape