| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- import random
- import os.path as osp
- import numpy as np
- import cv2
- from PIL import Image, ImageEnhance
- from .imgaug_support import execute_imgaug
- from .ops import *
- from .box_utils import *
- import paddlex.utils.logging as logging
- class DetTransform:
- """检测数据处理基类
- """
- def __init__(self):
- pass
- class Compose(DetTransform):
- """根据数据预处理/增强列表对输入数据进行操作。
- 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
- Args:
- transforms (list): 数据预处理/增强列表。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- def __init__(self, transforms):
- if not isinstance(transforms, list):
- raise TypeError('The transforms must be a list!')
- if len(transforms) < 1:
- raise ValueError('The length of transforms ' + \
- 'must be equal or larger than 1!')
- self.transforms = transforms
- self.batch_transforms = None
- self.use_mixup = False
- for t in self.transforms:
- if type(t).__name__ == 'MixupImage':
- self.use_mixup = True
- # 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
- for op in self.transforms:
- if not isinstance(op, DetTransform):
- import imgaug.augmenters as iaa
- if not isinstance(op, iaa.Augmenter):
- raise Exception(
- "Elements in transforms should be defined in 'paddlex.det.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
- )
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (str/np.ndarray): 图像路径/图像np.ndarray数据。
- im_info (dict): 存储与图像相关的信息,dict中的字段如下:
- - im_id (np.ndarray): 图像序列号,形状为(1,)。
- - image_shape (np.ndarray): 图像原始大小,形状为(2,),
- image_shape[0]为高,image_shape[1]为宽。
- - mixup (list): list为[im, im_info, label_info],分别对应
- 与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
- 注意,当前epoch若无需进行mixup,则无该字段。
- label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
- - gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
- 长度为n,其中n代表真实标注框的个数。
- - is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Returns:
- tuple: 根据网络所需字段所组成的tuple;
- 字段由transforms中的最后一个数据预处理操作决定。
- """
- def decode_image(im_file, im_info, label_info, input_channel=3):
- if im_info is None:
- im_info = dict()
- if isinstance(im_file, np.ndarray):
- if len(im_file.shape) != 3:
- raise Exception(
- "im should be 3-dimensions, but now is {}-dimensions".
- format(len(im_file.shape)))
- im = im_file
- else:
- try:
- if input_channel == 3:
- im = cv2.imread(im_file).astype('float32')
- else:
- im = cv2.imread(im_file,
- cv2.IMREAD_UNCHANGED).astype('float32')
- if im.ndim < 3:
- im = np.expand_dims(im, axis=-1)
- except:
- raise TypeError('Can\'t read The image file {}!'.format(
- im_file))
- im = im.astype('float32')
- if input_channel == 3:
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
- # make default im_info with [h, w, 1]
- im_info['im_resize_info'] = np.array(
- [im.shape[0], im.shape[1], 1.], dtype=np.float32)
- im_info['image_shape'] = np.array([im.shape[0],
- im.shape[1]]).astype('int32')
- if not self.use_mixup:
- if 'mixup' in im_info:
- del im_info['mixup']
- # decode mixup image
- if 'mixup' in im_info:
- im_info['mixup'] = \
- decode_image(im_info['mixup'][0],
- im_info['mixup'][1],
- im_info['mixup'][2])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- input_channel = getattr(self, 'input_channel', 3)
- outputs = decode_image(im, im_info, label_info, input_channel)
- im = outputs[0]
- im_info = outputs[1]
- if len(outputs) == 3:
- label_info = outputs[2]
- for op in self.transforms:
- if im is None:
- return None
- if isinstance(op, DetTransform):
- outputs = op(im, im_info, label_info)
- im = outputs[0]
- else:
- if im.shape[-1] != 3:
- raise Exception(
- "Only the 3-channel RGB image is supported in the imgaug operator, but recieved image channel is {}".
- format(im.shape[-1]))
- im = execute_imgaug(op, im)
- if label_info is not None:
- outputs = (im, im_info, label_info)
- else:
- outputs = (im, im_info)
- return outputs
- def add_augmenters(self, augmenters):
- if not isinstance(augmenters, list):
- raise Exception(
- "augmenters should be list type in func add_augmenters()")
- transform_names = [type(x).__name__ for x in self.transforms]
- for aug in augmenters:
- if type(aug).__name__ in transform_names:
- logging.error(
- "{} is already in ComposedTransforms, need to remove it from add_augmenters().".
- format(type(aug).__name__))
- self.transforms = augmenters + self.transforms
- class ResizeByShort(DetTransform):
- """根据图像的短边调整图像大小(resize)。
- 1. 获取图像的长边和短边长度。
- 2. 根据短边与short_size的比例,计算长边的目标长度,
- 此时高、宽的resize比例为short_size/原图短边长度。
- 若short_size为数组,则随机从该数组中挑选一个数值
- 作为short_size。
- 3. 如果max_size>0,调整resize比例:
- 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
- 4. 根据调整大小的比例对图像进行resize。
- Args:
- short_size (int|list): 短边目标长度。默认为800。
- max_size (int): 长边目标长度的最大限制。默认为1333。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, short_size=800, max_size=1333):
- self.max_size = int(max_size)
- if not (isinstance(short_size, int) or isinstance(short_size, list)):
- raise TypeError(
- "Type of short_size is invalid. Must be Integer or List, now is {}".
- format(type(short_size)))
- self.short_size = short_size
- if not (isinstance(self.max_size, int)):
- raise TypeError("max_size: input type is invalid.")
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
- 三者组成的np.ndarray,形状为(3,)。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("ResizeByShort: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('ResizeByShort: image is not 3-dimensional.')
- im_short_size = min(im.shape[0], im.shape[1])
- im_long_size = max(im.shape[0], im.shape[1])
- if isinstance(self.short_size, list):
- # Case for multi-scale training
- selected_size = random.choice(self.short_size)
- else:
- selected_size = self.short_size
- scale = float(selected_size) / im_short_size
- if self.max_size > 0 and np.round(scale *
- im_long_size) > self.max_size:
- scale = float(self.max_size) / float(im_long_size)
- resized_width = int(round(im.shape[1] * scale))
- resized_height = int(round(im.shape[0] * scale))
- im_resize_info = [resized_height, resized_width, scale]
- im = cv2.resize(
- im, (resized_width, resized_height),
- interpolation=cv2.INTER_LINEAR)
- if im.ndim < 3:
- im = np.expand_dims(im, axis=-1)
- im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Padding(DetTransform):
- """1.将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
- `coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
- 进行padding,最终输出图像为[320, 640]。
- 2.或者,将图像的长和宽padding到target_size指定的shape,如输入的图像为[300,640],
- a. `target_size` = 960,在图像最右和最下使用0值进行padding,最终输出
- 图像为[960, 960]。
- b. `target_size` = [640, 960],在图像最右和最下使用0值进行padding,最终
- 输出图像为[640, 960]。
- 1. 如果coarsest_stride为1,target_size为None则直接返回。
- 2. 获取图像的高H、宽W。
- 3. 计算填充后图像的高H_new、宽W_new。
- 4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
- 并将原图的np.ndarray粘贴于左上角。
- Args:
- coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
- target_size (int|list|tuple): 填充后的图像长、宽,默认为None,coarset_stride优先级更高。
- Raises:
- TypeError: 形参`target_size`数据类型不满足需求。
- ValueError: 形参`target_size`为(list|tuple)时,长度不满足需求。
- """
- def __init__(self, coarsest_stride=1, target_size=None):
- self.coarsest_stride = coarsest_stride
- if target_size is not None:
- if not isinstance(target_size, int):
- if not isinstance(target_size, tuple) and not isinstance(
- target_size, list):
- raise TypeError(
- "Padding: Type of target_size must in (int|list|tuple)."
- )
- elif len(target_size) != 2:
- raise ValueError(
- "Padding: Length of target_size must equal 2.")
- self.target_size = target_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- ValueError: coarsest_stride,target_size需有且只有一个被指定。
- ValueError: target_size小于原图的大小。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Padding: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Padding: image is not 3-dimensional.')
- im_h, im_w, im_c = im.shape[:]
- if isinstance(self.target_size, int):
- padding_im_h = self.target_size
- padding_im_w = self.target_size
- elif isinstance(self.target_size, list) or isinstance(self.target_size,
- tuple):
- padding_im_w = self.target_size[0]
- padding_im_h = self.target_size[1]
- elif self.coarsest_stride > 0:
- padding_im_h = int(
- np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
- padding_im_w = int(
- np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
- else:
- raise ValueError(
- "coarsest_stridei(>1) or target_size(list|int) need setting in Padding transform"
- )
- pad_height = padding_im_h - im_h
- pad_width = padding_im_w - im_w
- if pad_height < 0 or pad_width < 0:
- raise ValueError(
- 'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
- .format(im_w, im_h, padding_im_w, padding_im_h))
- padding_im = np.zeros(
- (padding_im_h, padding_im_w, im_c), dtype=np.float32)
- padding_im[:im_h, :im_w, :] = im
- if label_info is None:
- return (padding_im, im_info)
- else:
- return (padding_im, im_info, label_info)
- class Resize(DetTransform):
- """调整图像大小(resize)。
- - 当目标大小(target_size)类型为int时,根据插值方式,
- 将图像resize为[target_size, target_size]。
- - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
- 将图像resize为target_size。
- 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
- Args:
- target_size (int/list/tuple): 短边目标长度。默认为608。
- interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
- ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
- 'AREA', 'LANCZOS4', 'RANDOM']中。
- """
- # The interpolation mode
- interp_dict = {
- 'NEAREST': cv2.INTER_NEAREST,
- 'LINEAR': cv2.INTER_LINEAR,
- 'CUBIC': cv2.INTER_CUBIC,
- 'AREA': cv2.INTER_AREA,
- 'LANCZOS4': cv2.INTER_LANCZOS4
- }
- def __init__(self, target_size=608, interp='LINEAR'):
- self.interp = interp
- if not (interp == "RANDOM" or interp in self.interp_dict):
- raise ValueError("interp should be one of {}".format(
- self.interp_dict.keys()))
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- if len(target_size) != 2:
- raise TypeError(
- 'when target is list or tuple, it should include 2 elements, but it is {}'
- .format(target_size))
- elif not isinstance(target_size, int):
- raise TypeError(
- "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
- .format(type(target_size)))
- self.target_size = target_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Resize: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Resize: image is not 3-dimensional.')
- if self.interp == "RANDOM":
- interp = random.choice(list(self.interp_dict.keys()))
- else:
- interp = self.interp
- im = resize(im, self.target_size, self.interp_dict[interp])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomHorizontalFlip(DetTransform):
- """随机翻转图像、标注框、分割信息,模型训练时的数据增强操作。
- 1. 随机采样一个0-1之间的小数,当小数小于水平翻转概率时,
- 执行2-4步操作,否则直接返回。
- 2. 水平翻转图像。
- 3. 计算翻转后的真实标注框的坐标,更新label_info中的gt_bbox信息。
- 4. 计算翻转后的真实分割区域的坐标,更新label_info中的gt_poly信息。
- Args:
- prob (float): 随机水平翻转的概率。默认为0.5。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, prob=0.5):
- self.prob = prob
- if not isinstance(self.prob, float):
- raise TypeError("RandomHorizontalFlip: input type is invalid.")
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - gt_bbox (np.ndarray): 水平翻转后的标注框坐标[x1, y1, x2, y2],形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_poly (list): 水平翻转后的多边形分割区域的x、y坐标,长度为n,
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if not isinstance(im, np.ndarray):
- raise TypeError(
- "RandomHorizontalFlip: image is not a numpy array.")
- if len(im.shape) != 3:
- raise ValueError(
- "RandomHorizontalFlip: image is not 3-dimensional.")
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomHorizontalFlip! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'gt_bbox' not in label_info:
- raise TypeError('Cannot do RandomHorizontalFlip! ' + \
- 'Becasuse gt_bbox is not in label_info!')
- image_shape = im_info['image_shape']
- gt_bbox = label_info['gt_bbox']
- height = image_shape[0]
- width = image_shape[1]
- if np.random.uniform(0, 1) < self.prob:
- im = horizontal_flip(im)
- if gt_bbox.shape[0] == 0:
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- label_info['gt_bbox'] = box_horizontal_flip(gt_bbox, width)
- if 'gt_poly' in label_info and \
- len(label_info['gt_poly']) != 0:
- label_info['gt_poly'] = segms_horizontal_flip(
- label_info['gt_poly'], height, width)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Normalize(DetTransform):
- """对图像进行标准化。
- 1. 归一化图像到到区间[0.0, 1.0]。
- 2. 对图像进行减均值除以标准差操作。
- Args:
- mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
- std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
- self.mean = mean
- self.std = std
- if not (isinstance(self.mean, list) and isinstance(self.std, list)):
- raise TypeError("NormalizeImage: input type is invalid.")
- from functools import reduce
- if reduce(lambda x, y: x * y, self.std) == 0:
- raise TypeError('NormalizeImage: std is invalid!')
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
- min_val = [0] * im.shape[-1]
- max_val = [255] * im.shape[-1]
- im = normalize(im, mean, std, min_val, max_val)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomDistort(DetTransform):
- """以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作
- 1. 对变换的操作顺序进行随机化操作。
- 2. 按照1中的顺序以一定的概率在范围[-range, range]对图像进行随机像素内容变换。
- Args:
- brightness_range (float): 明亮度因子的范围。默认为0.5。
- brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
- contrast_range (float): 对比度因子的范围。默认为0.5。
- contrast_prob (float): 随机调整对比度的概率。默认为0.5。
- saturation_range (float): 饱和度因子的范围。默认为0.5。
- saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
- hue_range (int): 色调因子的范围。默认为18。
- hue_prob (float): 随机调整色调的概率。默认为0.5。
- """
- def __init__(self,
- brightness_range=0.5,
- brightness_prob=0.5,
- contrast_range=0.5,
- contrast_prob=0.5,
- saturation_range=0.5,
- saturation_prob=0.5,
- hue_range=18,
- hue_prob=0.5):
- self.brightness_range = brightness_range
- self.brightness_prob = brightness_prob
- self.contrast_range = contrast_range
- self.contrast_prob = contrast_prob
- self.saturation_range = saturation_range
- self.saturation_prob = saturation_prob
- self.hue_range = hue_range
- self.hue_prob = hue_prob
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- if im.shape[-1] != 3:
- raise Exception(
- "Only the 3-channel RGB image is supported in the RandomDistort operator, but recieved image channel is {}".
- format(im.shape[-1]))
- brightness_lower = 1 - self.brightness_range
- brightness_upper = 1 + self.brightness_range
- contrast_lower = 1 - self.contrast_range
- contrast_upper = 1 + self.contrast_range
- saturation_lower = 1 - self.saturation_range
- saturation_upper = 1 + self.saturation_range
- hue_lower = -self.hue_range
- hue_upper = self.hue_range
- ops = [brightness, contrast, saturation, hue]
- random.shuffle(ops)
- params_dict = {
- 'brightness': {
- 'brightness_lower': brightness_lower,
- 'brightness_upper': brightness_upper
- },
- 'contrast': {
- 'contrast_lower': contrast_lower,
- 'contrast_upper': contrast_upper
- },
- 'saturation': {
- 'saturation_lower': saturation_lower,
- 'saturation_upper': saturation_upper
- },
- 'hue': {
- 'hue_lower': hue_lower,
- 'hue_upper': hue_upper
- }
- }
- prob_dict = {
- 'brightness': self.brightness_prob,
- 'contrast': self.contrast_prob,
- 'saturation': self.saturation_prob,
- 'hue': self.hue_prob
- }
- for id in range(4):
- params = params_dict[ops[id].__name__]
- prob = prob_dict[ops[id].__name__]
- params['im'] = im
- if np.random.uniform(0, 1) < prob:
- im = ops[id](**params)
- im = im.astype('float32')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class MixupImage(DetTransform):
- """对图像进行mixup操作,模型训练时的数据增强操作,目前仅YOLOv3模型支持该transform。
- 当label_info中不存在mixup字段时,直接返回,否则进行下述操作:
- 1. 从随机beta分布中抽取出随机因子factor。
- 2.
- - 当factor>=1.0时,去除label_info中的mixup字段,直接返回。
- - 当factor<=0.0时,直接返回label_info中的mixup字段,并在label_info中去除该字段。
- - 其余情况,执行下述操作:
- (1)原图像乘以factor,mixup图像乘以(1-factor),叠加2个结果。
- (2)拼接原图像标注框和mixup图像标注框。
- (3)拼接原图像标注框类别和mixup图像标注框类别。
- (4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
- 3. 更新im_info中的image_shape信息。
- Args:
- alpha (float): 随机beta分布的下限。默认为1.5。
- beta (float): 随机beta分布的上限。默认为1.5。
- mixup_epoch (int): 在前mixup_epoch轮使用mixup增强操作;当该参数为-1时,该策略不会生效。
- 默认为-1。
- Raises:
- ValueError: 数据长度不匹配。
- """
- def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
- self.alpha = alpha
- self.beta = beta
- if self.alpha <= 0.0:
- raise ValueError("alpha shold be positive in MixupImage")
- if self.beta <= 0.0:
- raise ValueError("beta shold be positive in MixupImage")
- self.mixup_epoch = mixup_epoch
- def _mixup_img(self, img1, img2, factor):
- h = max(img1.shape[0], img2.shape[0])
- w = max(img1.shape[1], img2.shape[1])
- img = np.zeros((h, w, img1.shape[2]), 'float32')
- img[:img1.shape[0], :img1.shape[1], :] = \
- img1.astype('float32') * factor
- img[:img2.shape[0], :img2.shape[1], :] += \
- img2.astype('float32') * (1.0 - factor)
- return img.astype('float32')
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- im_info删除的字段:
- - mixup (list): 与当前字段进行mixup的图像相关信息。
- label_info更新字段为:
- - gt_bbox (np.ndarray): mixup后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): mixup后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): mixup后每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None:
- raise TypeError('Cannot do MixupImage! ' +
- 'Becasuse the im_info can not be None!')
- if 'mixup' not in im_info:
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- factor = np.random.beta(self.alpha, self.beta)
- factor = max(0.0, min(1.0, factor))
- if im_info['epoch'] > self.mixup_epoch \
- or factor >= 1.0:
- im_info.pop('mixup')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- if factor <= 0.0:
- return im_info.pop('mixup')
- im = self._mixup_img(im, im_info['mixup'][0], factor)
- if label_info is None:
- raise TypeError('Cannot do MixupImage! ' +
- 'Becasuse the label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info or \
- 'gt_score' not in label_info:
- raise TypeError('Cannot do MixupImage! ' + \
- 'Becasuse gt_bbox/gt_class/gt_score is not in label_info!')
- gt_bbox1 = label_info['gt_bbox']
- gt_bbox2 = im_info['mixup'][2]['gt_bbox']
- gt_class1 = label_info['gt_class']
- gt_class2 = im_info['mixup'][2]['gt_class']
- gt_score1 = label_info['gt_score']
- gt_score2 = im_info['mixup'][2]['gt_score']
- if 'gt_poly' in label_info:
- gt_poly1 = label_info['gt_poly']
- gt_poly2 = im_info['mixup'][2]['gt_poly']
- is_crowd1 = label_info['is_crowd']
- is_crowd2 = im_info['mixup'][2]['is_crowd']
- if 0 not in gt_class1 and 0 not in gt_class2:
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
- gt_score = np.concatenate(
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
- if 'gt_poly' in label_info:
- label_info['gt_poly'] = gt_poly1 + gt_poly2
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
- elif 0 in gt_class1:
- gt_bbox = gt_bbox2
- gt_class = gt_class2
- gt_score = gt_score2 * (1. - factor)
- if 'gt_poly' in label_info:
- label_info['gt_poly'] = gt_poly2
- is_crowd = is_crowd2
- else:
- gt_bbox = gt_bbox1
- gt_class = gt_class1
- gt_score = gt_score1 * factor
- if 'gt_poly' in label_info:
- label_info['gt_poly'] = gt_poly1
- is_crowd = is_crowd1
- label_info['gt_bbox'] = gt_bbox
- label_info['gt_score'] = gt_score
- label_info['gt_class'] = gt_class
- label_info['is_crowd'] = is_crowd
- im_info['image_shape'] = np.array([im.shape[0],
- im.shape[1]]).astype('int32')
- im_info.pop('mixup')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomExpand(DetTransform):
- """随机扩张图像,模型训练时的数据增强操作。
- 1. 随机选取扩张比例(扩张比例大于1时才进行扩张)。
- 2. 计算扩张后图像大小。
- 3. 初始化像素值为输入填充值的图像,并将原图像随机粘贴于该图像上。
- 4. 根据原图像粘贴位置换算出扩张后真实标注框的位置坐标。
- 5. 根据原图像粘贴位置换算出扩张后真实分割区域的位置坐标。
- Args:
- ratio (float): 图像扩张的最大比例。默认为4.0。
- prob (float): 随机扩张的概率。默认为0.5。
- fill_value (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
- """
- def __init__(self,
- ratio=4.,
- prob=0.5,
- fill_value=[123.675, 116.28, 103.53]):
- super(RandomExpand, self).__init__()
- assert ratio > 1.01, "expand ratio must be larger than 1.01"
- self.ratio = ratio
- self.prob = prob
- assert isinstance(fill_value, Sequence), \
- "fill value must be sequence"
- if not isinstance(fill_value, tuple):
- fill_value = tuple(fill_value)
- self.fill_value = fill_value
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- label_info更新字段为:
- - gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 随机扩张后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomExpand! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info:
- raise TypeError('Cannot do RandomExpand! ' + \
- 'Becasuse gt_bbox/gt_class is not in label_info!')
- if np.random.uniform(0., 1.) > self.prob:
- return (im, im_info, label_info)
- if 'gt_class' in label_info and 0 in label_info['gt_class']:
- return (im, im_info, label_info)
- image_shape = im_info['image_shape']
- height = int(image_shape[0])
- width = int(image_shape[1])
- expand_ratio = np.random.uniform(1., self.ratio)
- h = int(height * expand_ratio)
- w = int(width * expand_ratio)
- if not h > height or not w > width:
- return (im, im_info, label_info)
- y = np.random.randint(0, h - height)
- x = np.random.randint(0, w - width)
- canvas = np.ones((h, w, 3), dtype=np.float32)
- canvas *= np.array(self.fill_value, dtype=np.float32)
- canvas[y:y + height, x:x + width, :] = im
- im_info['image_shape'] = np.array([h, w]).astype('int32')
- if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
- label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
- if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
- label_info['gt_poly'] = expand_segms(label_info['gt_poly'], x, y,
- height, width, expand_ratio)
- return (canvas, im_info, label_info)
- class RandomCrop(DetTransform):
- """随机裁剪图像。
- 1. 若allow_no_crop为True,则在thresholds加入’no_crop’。
- 2. 随机打乱thresholds。
- 3. 遍历thresholds中各元素:
- (1) 如果当前thresh为’no_crop’,则返回原始图像和标注信息。
- (2) 随机取出aspect_ratio和scaling中的值并由此计算出候选裁剪区域的高、宽、起始点。
- (3) 计算真实标注框与候选裁剪区域IoU,若全部真实标注框的IoU都小于thresh,则继续第3步。
- (4) 如果cover_all_box为True且存在真实标注框的IoU小于thresh,则继续第3步。
- (5) 筛选出位于候选裁剪区域内的真实标注框,若有效框的个数为0,则继续第3步,否则进行第4步。
- 4. 换算有效真值标注框相对候选裁剪区域的位置坐标。
- 5. 换算有效分割区域相对候选裁剪区域的位置坐标。
- Args:
- aspect_ratio (list): 裁剪后短边缩放比例的取值范围,以[min, max]形式表示。默认值为[.5, 2.]。
- thresholds (list): 判断裁剪候选区域是否有效所需的IoU阈值取值列表。默认值为[.0, .1, .3, .5, .7, .9]。
- scaling (list): 裁剪面积相对原面积的取值范围,以[min, max]形式表示。默认值为[.3, 1.]。
- num_attempts (int): 在放弃寻找有效裁剪区域前尝试的次数。默认值为50。
- allow_no_crop (bool): 是否允许未进行裁剪。默认值为True。
- cover_all_box (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
- """
- def __init__(self,
- aspect_ratio=[.5, 2.],
- thresholds=[.0, .1, .3, .5, .7, .9],
- scaling=[.3, 1.],
- num_attempts=50,
- allow_no_crop=True,
- cover_all_box=False):
- self.aspect_ratio = aspect_ratio
- self.thresholds = thresholds
- self.scaling = scaling
- self.num_attempts = num_attempts
- self.allow_no_crop = allow_no_crop
- self.cover_all_box = cover_all_box
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
- label_info更新字段为:
- - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomCrop! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info:
- raise TypeError('Cannot do RandomCrop! ' + \
- 'Becasuse gt_bbox/gt_class is not in label_info!')
- if len(label_info['gt_bbox']) == 0:
- return (im, im_info, label_info)
- if 'gt_class' in label_info and 0 in label_info['gt_class']:
- return (im, im_info, label_info)
- image_shape = im_info['image_shape']
- w = image_shape[1]
- h = image_shape[0]
- gt_bbox = label_info['gt_bbox']
- thresholds = list(self.thresholds)
- if self.allow_no_crop:
- thresholds.append('no_crop')
- np.random.shuffle(thresholds)
- for thresh in thresholds:
- if thresh == 'no_crop':
- return (im, im_info, label_info)
- found = False
- for i in range(self.num_attempts):
- scale = np.random.uniform(*self.scaling)
- min_ar, max_ar = self.aspect_ratio
- aspect_ratio = np.random.uniform(
- max(min_ar, scale**2), min(max_ar, scale**-2))
- crop_h = int(h * scale / np.sqrt(aspect_ratio))
- crop_w = int(w * scale * np.sqrt(aspect_ratio))
- crop_y = np.random.randint(0, h - crop_h)
- crop_x = np.random.randint(0, w - crop_w)
- crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
- iou = iou_matrix(
- gt_bbox, np.array(
- [crop_box], dtype=np.float32))
- if iou.max() < thresh:
- continue
- if self.cover_all_box and iou.min() < thresh:
- continue
- cropped_box, valid_ids = crop_box_with_center_constraint(
- gt_bbox, np.array(
- crop_box, dtype=np.float32))
- if valid_ids.size > 0:
- found = True
- break
- if found:
- if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
- crop_polys = crop_segms(
- label_info['gt_poly'],
- valid_ids,
- np.array(
- crop_box, dtype=np.int64),
- h,
- w)
- if [] in crop_polys:
- delete_id = list()
- valid_polys = list()
- for id, crop_poly in enumerate(crop_polys):
- if crop_poly == []:
- delete_id.append(id)
- else:
- valid_polys.append(crop_poly)
- valid_ids = np.delete(valid_ids, delete_id)
- if len(valid_polys) == 0:
- return (im, im_info, label_info)
- label_info['gt_poly'] = valid_polys
- else:
- label_info['gt_poly'] = crop_polys
- im = crop_image(im, crop_box)
- label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
- label_info['gt_class'] = np.take(
- label_info['gt_class'], valid_ids, axis=0)
- im_info['image_shape'] = np.array(
- [crop_box[3] - crop_box[1],
- crop_box[2] - crop_box[0]]).astype('int32')
- if 'gt_score' in label_info:
- label_info['gt_score'] = np.take(
- label_info['gt_score'], valid_ids, axis=0)
- if 'is_crowd' in label_info:
- label_info['is_crowd'] = np.take(
- label_info['is_crowd'], valid_ids, axis=0)
- return (im, im_info, label_info)
- return (im, im_info, label_info)
- class CLAHE(DetTransform):
- """对图像进行对比度增强。
- Args:
- clip_limit (int|float): 颜色对比度的阈值,默认值为2.。
- tile_grid_size (list|tuple): 进行像素均衡化的网格大小。默认值为(8, 8)。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, clip_limit=2., tile_grid_size=(8, 8)):
- self.clip_limit = clip_limit
- self.tile_grid_size = tile_grid_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- if im.shape[-1] != 1:
- raise Exception(
- "Only the one-channel image is supported in the CLAHE operator, but recieved image channel is {}".
- format(im.shape[-1]))
- clahe = cv2.createCLAHE(
- clipLimit=self.clip_limit, tileGridSize=self.tile_grid_size)
- im = clahe.apply(im).astype(im.dtype)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class ArrangeFasterRCNN(DetTransform):
- """获取FasterRCNN模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd),分别对应
- 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象;
- 当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape, gt_bbox, gt_class, is_difficult),
- 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像id、图像大小信息、真实标注框、真实标注框对应的类别、
- 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),分别对应图像np.ndarray数据、
- 图像相当对于原图的resize信息、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_resize_info = im_info['im_resize_info']
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_crowd = label_info['is_crowd']
- outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd)
- elif self.mode == 'eval':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_id = im_info['im_id']
- im_shape = np.array(
- (im_info['image_shape'][0], im_info['image_shape'][1], 1),
- dtype=np.float32)
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_difficult = label_info['difficult']
- outputs = (im, im_resize_info, im_id, im_shape, gt_bbox, gt_class,
- is_difficult)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_shape = np.array(
- (im_info['image_shape'][0], im_info['image_shape'][1], 1),
- dtype=np.float32)
- outputs = (im, im_resize_info, im_shape)
- return outputs
- class ArrangeMaskRCNN(DetTransform):
- """获取MaskRCNN模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd, gt_masks),分别对应
- 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象、
- 真实分割区域;当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape),分别对应图像np.ndarray数据、
- 图像相当对于原图的resize信息、图像id、图像大小信息;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),
- 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeTrainMaskRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_resize_info = im_info['im_resize_info']
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_crowd = label_info['is_crowd']
- assert 'gt_poly' in label_info
- segms = label_info['gt_poly']
- if len(segms) != 0:
- assert len(segms) == is_crowd.shape[0]
- gt_masks = []
- valid = True
- for i in range(len(segms)):
- segm = segms[i]
- gt_segm = []
- if is_crowd[i]:
- gt_segm.append([[0, 0]])
- else:
- for poly in segm:
- if len(poly) == 0:
- valid = False
- break
- gt_segm.append(np.array(poly).reshape(-1, 2))
- if (not valid) or len(gt_segm) == 0:
- break
- gt_masks.append(gt_segm)
- outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd,
- gt_masks)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeMaskRCNN! ' +
- 'Becasuse the im_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_shape = np.array(
- (im_info['image_shape'][0], im_info['image_shape'][1], 1),
- dtype=np.float32)
- if self.mode == 'eval':
- im_id = im_info['im_id']
- outputs = (im, im_resize_info, im_id, im_shape)
- else:
- outputs = (im, im_resize_info, im_shape)
- return outputs
- class ArrangeYOLOv3(DetTransform):
- """获取YOLOv3模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
- 图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
- 当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
- 分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
- 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
- 分别对应图像np.ndarray数据、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_shape = im_info['image_shape']
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- if len(label_info['gt_bbox']) != len(label_info['gt_score']):
- raise ValueError("gt num mismatch: bbox and score.")
- gt_bbox = np.zeros((50, 4), dtype=im.dtype)
- gt_class = np.zeros((50, ), dtype=np.int32)
- gt_score = np.zeros((50, ), dtype=im.dtype)
- gt_num = min(50, len(label_info['gt_bbox']))
- if gt_num > 0:
- label_info['gt_class'][:gt_num, 0] = label_info[
- 'gt_class'][:gt_num, 0] - 1
- if -1 not in label_info['gt_class']:
- gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
- gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
- gt_score[:gt_num] = label_info['gt_score'][:gt_num, 0]
- # parse [x1, y1, x2, y2] to [x, y, w, h]
- gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
- gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
- outputs = (im, gt_bbox, gt_class, gt_score, im_shape)
- elif self.mode == 'eval':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_shape = im_info['image_shape']
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_id = im_info['im_id']
- gt_bbox = np.zeros((50, 4), dtype=im.dtype)
- gt_class = np.zeros((50, ), dtype=np.int32)
- difficult = np.zeros((50, ), dtype=np.int32)
- gt_num = min(50, len(label_info['gt_bbox']))
- if gt_num > 0:
- label_info['gt_class'][:gt_num, 0] = label_info[
- 'gt_class'][:gt_num, 0] - 1
- gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
- gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
- difficult[:gt_num] = label_info['difficult'][:gt_num, 0]
- outputs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info can not be None!')
- im_shape = im_info['image_shape']
- outputs = (im, im_shape)
- return outputs
- class ComposedRCNNTransforms(Compose):
- """ RCNN模型(faster-rcnn/mask-rcnn)图像处理流程,具体如下,
- 训练阶段:
- 1. 随机以0.5的概率将图像水平翻转
- 2. 图像归一化
- 3. 图像按比例Resize,scale计算方式如下
- scale = min_max_size[0] / short_size_of_image
- if max_size_of_image * scale > min_max_size[1]:
- scale = min_max_size[1] / max_size_of_image
- 4. 将3步骤的长宽进行padding,使得长宽为32的倍数
- 验证阶段:
- 1. 图像归一化
- 2. 图像按比例Resize,scale计算方式同上训练阶段
- 3. 将2步骤的长宽进行padding,使得长宽为32的倍数
- Args:
- mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
- min_max_size(list): 图像在缩放时,最小边和最大边的约束条件
- mean(list): 图像均值
- std(list): 图像方差
- random_horizontal_flip(bool): 是否以0.5的概率使用随机水平翻转增强,该仅在mode为`train`时生效,默认为True
- """
- def __init__(self,
- mode,
- min_max_size=[800, 1333],
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- random_horizontal_flip=True):
- if mode == 'train':
- # 训练时的transforms,包含数据增强
- transforms = [
- Normalize(
- mean=mean, std=std), ResizeByShort(
- short_size=min_max_size[0], max_size=min_max_size[1]),
- Padding(coarsest_stride=32)
- ]
- if random_horizontal_flip:
- transforms.insert(0, RandomHorizontalFlip())
- else:
- # 验证/预测时的transforms
- transforms = [
- Normalize(
- mean=mean, std=std), ResizeByShort(
- short_size=min_max_size[0], max_size=min_max_size[1]),
- Padding(coarsest_stride=32)
- ]
- super(ComposedRCNNTransforms, self).__init__(transforms)
- class ComposedYOLOv3Transforms(Compose):
- """YOLOv3模型的图像预处理流程,具体如下,
- 训练阶段:
- 1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
- 2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
- 3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
- 4. 随机裁剪图像
- 5. 将4步骤的输出图像Resize成shape参数的大小
- 6. 随机0.5的概率水平翻转图像
- 7. 图像归一化
- 验证/预测阶段:
- 1. 将图像Resize成shape参数大小
- 2. 图像归一化
- Args:
- mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
- shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
- mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略, 若设为-1,则表示不使用该策略
- mean(list): 图像均值
- std(list): 图像方差
- random_distort(bool): 数据增强方式,参数仅在mode为`train`时生效,表示是否在训练过程中随机扰动图像,默认为True
- random_expand(bool): 数据增强方式,参数仅在mode为`train`时生效,表示是否在训练过程中随机扩张图像,默认为True
- random_crop(bool): 数据增强方式,参数仅在mode为`train`时生效,表示是否在训练过程中随机裁剪图像,默认为True
- random_horizontal_flip(bool): 数据增强方式,参数仅在mode为`train`时生效,表示是否在训练过程中随机水平翻转图像,默认为True
- """
- def __init__(self,
- mode,
- shape=[608, 608],
- mixup_epoch=250,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- random_distort=True,
- random_expand=True,
- random_crop=True,
- random_horizontal_flip=True):
- width = shape
- if isinstance(shape, list):
- if shape[0] != shape[1]:
- raise Exception(
- "In YOLOv3 model, width and height should be equal")
- width = shape[0]
- if width % 32 != 0:
- raise Exception(
- "In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
- )
- if mode == 'train':
- # 训练时的transforms,包含数据增强
- transforms = [
- MixupImage(mixup_epoch=mixup_epoch), Resize(
- target_size=width, interp='RANDOM'), Normalize(
- mean=mean, std=std)
- ]
- if random_horizontal_flip:
- transforms.insert(1, RandomHorizontalFlip())
- if random_crop:
- transforms.insert(1, RandomCrop())
- if random_expand:
- transforms.insert(1, RandomExpand())
- if random_distort:
- transforms.insert(1, RandomDistort())
- else:
- # 验证/预测时的transforms
- transforms = [
- Resize(
- target_size=width, interp='CUBIC'), Normalize(
- mean=mean, std=std)
- ]
- super(ComposedYOLOv3Transforms, self).__init__(transforms)
- class BatchRandomShape(DetTransform):
- """调整图像大小(resize)。
- 对batch数据中的每张图像全部resize到random_shapes中任意一个大小。
- 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
- Args:
- random_shapes (list): resize大小选择列表。
- 默认为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。
- interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
- ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"RANDOM"。
- Raises:
- ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
- 'AREA', 'LANCZOS4', 'RANDOM']中。
- """
- # The interpolation mode
- interp_dict = {
- 'NEAREST': cv2.INTER_NEAREST,
- 'LINEAR': cv2.INTER_LINEAR,
- 'CUBIC': cv2.INTER_CUBIC,
- 'AREA': cv2.INTER_AREA,
- 'LANCZOS4': cv2.INTER_LANCZOS4
- }
- def __init__(
- self,
- random_shapes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
- interp='RANDOM'):
- if not (interp == "RANDOM" or interp in self.interp_dict):
- raise ValueError("interp should be one of {}".format(
- self.interp_dict.keys()))
- self.random_shapes = random_shapes
- self.interp = interp
- def __call__(self, batch_data):
- """
- Args:
- batch_data (list): 由与图像相关的各种信息组成的batch数据。
- Returns:
- list: 由与图像相关的各种信息组成的batch数据。
- """
- shape = np.random.choice(self.random_shapes)
- if self.interp == "RANDOM":
- interp = random.choice(list(self.interp_dict.keys()))
- else:
- interp = self.interp
- for data_id, data in enumerate(batch_data):
- data_list = list(data)
- im = data_list[0]
- im = np.swapaxes(im, 1, 0)
- im = np.swapaxes(im, 1, 2)
- im = resize(im, shape, self.interp_dict[interp])
- im = np.swapaxes(im, 1, 2)
- im = np.swapaxes(im, 1, 0)
- data_list[0] = im
- batch_data[data_id] = tuple(data_list)
- return batch_data
- class GenerateYoloTarget(object):
- """生成YOLOv3的ground truth(真实标注框)在不同特征层的位置转换信息。
- 该transform只在YOLOv3计算细粒度loss时使用。
- Args:
- anchors (list|tuple): anchor框的宽度和高度。
- anchor_masks (list|tuple): 在计算损失时,使用anchor的mask索引。
- num_classes (int): 类别数。默认为80。
- iou_thresh (float): iou阈值,当anchor和真实标注框的iou大于该阈值时,计入target。默认为1.0。
- """
- def __init__(self,
- anchors,
- anchor_masks,
- downsample_ratios,
- num_classes=80,
- iou_thresh=1.):
- super(GenerateYoloTarget, self).__init__()
- self.anchors = anchors
- self.anchor_masks = anchor_masks
- self.downsample_ratios = downsample_ratios
- self.num_classes = num_classes
- self.iou_thresh = iou_thresh
- def __call__(self, batch_data):
- """
- Args:
- batch_data (list): 由与图像相关的各种信息组成的batch数据。
- Returns:
- list: 由与图像相关的各种信息组成的batch数据。
- 其中,每个数据新添加的字段为:
- - target0 (np.ndarray): YOLOv3的ground truth在特征层0的位置转换信息,
- 形状为(特征层0的anchor数量, 6+类别数, 特征层0的h, 特征层0的w)。
- - target1 (np.ndarray): YOLOv3的ground truth在特征层1的位置转换信息,
- 形状为(特征层1的anchor数量, 6+类别数, 特征层1的h, 特征层1的w)。
- - ...
- -targetn (np.ndarray): YOLOv3的ground truth在特征层n的位置转换信息,
- 形状为(特征层n的anchor数量, 6+类别数, 特征层n的h, 特征层n的w)。
- n的是大小由anchor_masks的长度决定。
- """
- im = batch_data[0][0]
- h = im.shape[1]
- w = im.shape[2]
- an_hw = np.array(self.anchors) / np.array([[w, h]])
- for data_id, data in enumerate(batch_data):
- gt_bbox = data[1]
- gt_class = data[2]
- gt_score = data[3]
- im_shape = data[4]
- origin_h = float(im_shape[0])
- origin_w = float(im_shape[1])
- data_list = list(data)
- for i, (
- mask, downsample_ratio
- ) in enumerate(zip(self.anchor_masks, self.downsample_ratios)):
- grid_h = int(h / downsample_ratio)
- grid_w = int(w / downsample_ratio)
- target = np.zeros(
- (len(mask), 6 + self.num_classes, grid_h, grid_w),
- dtype=np.float32)
- for b in range(gt_bbox.shape[0]):
- gx = gt_bbox[b, 0] / float(origin_w)
- gy = gt_bbox[b, 1] / float(origin_h)
- gw = gt_bbox[b, 2] / float(origin_w)
- gh = gt_bbox[b, 3] / float(origin_h)
- cls = gt_class[b]
- score = gt_score[b]
- if gw <= 0. or gh <= 0. or score <= 0.:
- continue
- # find best match anchor index
- best_iou = 0.
- best_idx = -1
- for an_idx in range(an_hw.shape[0]):
- iou = jaccard_overlap(
- [0., 0., gw, gh],
- [0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
- if iou > best_iou:
- best_iou = iou
- best_idx = an_idx
- gi = int(gx * grid_w)
- gj = int(gy * grid_h)
- # gtbox should be regresed in this layes if best match
- # anchor index in anchor mask of this layer
- if best_idx in mask:
- best_n = mask.index(best_idx)
- # x, y, w, h, scale
- target[best_n, 0, gj, gi] = gx * grid_w - gi
- target[best_n, 1, gj, gi] = gy * grid_h - gj
- target[best_n, 2, gj, gi] = np.log(
- gw * w / self.anchors[best_idx][0])
- target[best_n, 3, gj, gi] = np.log(
- gh * h / self.anchors[best_idx][1])
- target[best_n, 4, gj, gi] = 2.0 - gw * gh
- # objectness record gt_score
- target[best_n, 5, gj, gi] = score
- # classification
- target[best_n, 6 + cls, gj, gi] = 1.
- # For non-matched anchors, calculate the target if the iou
- # between anchor and gt is larger than iou_thresh
- if self.iou_thresh < 1:
- for idx, mask_i in enumerate(mask):
- if mask_i == best_idx: continue
- iou = jaccard_overlap(
- [0., 0., gw, gh],
- [0., 0., an_hw[mask_i, 0], an_hw[mask_i, 1]])
- if iou > self.iou_thresh:
- # x, y, w, h, scale
- target[idx, 0, gj, gi] = gx * grid_w - gi
- target[idx, 1, gj, gi] = gy * grid_h - gj
- target[idx, 2, gj, gi] = np.log(
- gw * w / self.anchors[mask_i][0])
- target[idx, 3, gj, gi] = np.log(
- gh * h / self.anchors[mask_i][1])
- target[idx, 4, gj, gi] = 2.0 - gw * gh
- # objectness record gt_score
- target[idx, 5, gj, gi] = score
- # classification
- target[idx, 6 + cls, gj, gi] = 1.
- data_list.append(target)
- batch_data[data_id] = tuple(data_list)
- return batch_data
|