anomaly_detection.py 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.anomaly_detection.model_list import MODELS
  17. from ..components import *
  18. from ..results import SegResult
  19. from ..utils.process_hook import batchable_method
  20. from .base import BasicPredictor
  21. class UadPredictor(BasicPredictor):
  22. entities = MODELS
  23. _FUNC_MAP = {}
  24. register = FuncRegister(_FUNC_MAP)
  25. def _build_components(self):
  26. self._add_component(ReadImage(format="RGB"))
  27. for cfg in self.config["Deploy"]["transforms"]:
  28. tf_key = cfg["type"]
  29. func = self._FUNC_MAP.get(tf_key)
  30. cfg.pop("type")
  31. args = cfg
  32. op = func(self, **args) if args else func(self)
  33. self._add_component(op)
  34. self._add_component(ToCHWImage())
  35. predictor = ImagePredictor(
  36. model_dir=self.model_dir,
  37. model_prefix=self.MODEL_FILE_PREFIX,
  38. option=self.pp_option,
  39. )
  40. self._add_component(predictor)
  41. self._add_component(Map_to_mask())
  42. @register("Resize")
  43. def build_resize(
  44. self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR"
  45. ):
  46. assert target_size
  47. op = Resize(
  48. target_size=target_size,
  49. keep_ratio=keep_ratio,
  50. size_divisor=size_divisor,
  51. interp=interp,
  52. )
  53. return op
  54. @register("ResizeByLong")
  55. def build_resizebylong(self, long_size):
  56. assert long_size
  57. return ResizeByLong(
  58. target_long_edge=long_size, size_divisor=size_divisor, interp=interp
  59. )
  60. @register("ResizeByShort")
  61. def build_resizebylong(self, short_size):
  62. assert short_size
  63. return ResizeByLong(
  64. target_long_edge=short_size, size_divisor=size_divisor, interp=interp
  65. )
  66. @register("Normalize")
  67. def build_normalize(
  68. self,
  69. mean=0.5,
  70. std=0.5,
  71. ):
  72. return Normalize(mean=mean, std=std)
  73. def _pack_res(self, single):
  74. keys = ["input_path", "pred"]
  75. return SegResult({key: single[key] for key in keys})