table_recognition.py 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from ...utils.func_register import FuncRegister
  16. from ...modules.table_recognition.model_list import MODELS
  17. from ..components import *
  18. from ..results import TableRecResult
  19. from .base import BasicPredictor
  20. class TablePredictor(BasicPredictor):
  21. """table recognition predictor"""
  22. entities = MODELS
  23. _FUNC_MAP = {}
  24. register = FuncRegister(_FUNC_MAP)
  25. def _build_components(self):
  26. for cfg in self.config["PreProcess"]["transform_ops"]:
  27. tf_key = list(cfg.keys())[0]
  28. func = self._FUNC_MAP[tf_key]
  29. args = cfg.get(tf_key, {})
  30. op = func(self, **args) if args else func(self)
  31. if op:
  32. self._add_component(op)
  33. predictor = ImagePredictor(
  34. model_dir=self.model_dir,
  35. model_prefix=self.MODEL_FILE_PREFIX,
  36. option=self.pp_option,
  37. )
  38. self._add_component(predictor)
  39. op = self.build_postprocess(
  40. model_name=self.config["Global"]["model_name"], **self.config["PostProcess"]
  41. )
  42. self._add_component(op)
  43. def build_postprocess(self, model_name, **kwargs):
  44. if kwargs.get("name") == "TableLabelDecode":
  45. return TableLabelDecode(
  46. model_name=model_name,
  47. merge_no_span_structure=kwargs.get("merge_no_span_structure"),
  48. dict_character=kwargs.get("character_dict"),
  49. )
  50. else:
  51. raise Exception()
  52. @register("DecodeImage")
  53. def build_readimg(self, channel_first=False, img_mode="BGR"):
  54. assert channel_first is False
  55. assert img_mode == "BGR"
  56. return ReadImage(format=img_mode)
  57. @register("TableLabelEncode")
  58. def foo(self, *args, **kwargs):
  59. return None
  60. @register("TableBoxEncode")
  61. def foo(self, *args, **kwargs):
  62. return None
  63. @register("ResizeTableImage")
  64. def build_resize_table(self, max_len=488):
  65. return ResizeByLong(target_long_edge=max_len)
  66. @register("NormalizeImage")
  67. def build_normalize(
  68. self,
  69. mean=[0.485, 0.456, 0.406],
  70. std=[0.229, 0.224, 0.225],
  71. scale=1 / 255,
  72. order="hwc",
  73. ):
  74. return Normalize(mean=mean, std=std)
  75. @register("PaddingTableImage")
  76. def build_padding(self, size=[488, 448], pad_value=0):
  77. return Pad(target_size=size[0], val=pad_value)
  78. @register("ToCHWImage")
  79. def build_to_chw(self):
  80. return ToCHWImage()
  81. @register("KeepKeys")
  82. def foo(self, *args, **kwargs):
  83. return None
  84. def _pack_res(self, single):
  85. keys = ["input_path", "bbox", "structure"]
  86. return TableRecResult({key: single[key] for key in keys})