ts_cls.py 2.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. from ...modules.ts_classification.model_list import MODELS
  16. from ..components import *
  17. from ..results import TSClsResult
  18. from .base import BasicPredictor
  19. class TSClsPredictor(BasicPredictor):
  20. entities = MODELS
  21. def _build_components(self):
  22. if not self.config.get("info_params", None):
  23. raise Exception("info_params is not found in config file")
  24. self._add_component(ReadTS())
  25. if self.config.get("scale", None):
  26. scaler_file_path = os.path.join(self.model_dir, "scaler.pkl")
  27. if not os.path.exists(scaler_file_path):
  28. raise Exception(f"Cannot find scaler file: {scaler_file_path}")
  29. self._add_component(
  30. TSNormalize(scaler_file_path, self.config["info_params"])
  31. )
  32. self._add_component(BuildTSDataset(self.config["info_params"]))
  33. self._add_component(BuildPadMask(self.config["input_data"]))
  34. self._add_component(TStoArray(self.config["input_data"]))
  35. predictor = TSPPPredictor(
  36. model_dir=self.model_dir,
  37. model_prefix=self.MODEL_FILE_PREFIX,
  38. option=self.pp_option,
  39. )
  40. self._add_component(predictor)
  41. self._add_component(GetCls())
  42. def _pack_res(self, single):
  43. return TSClsResult(
  44. {
  45. "input_path": single["input_path"],
  46. "classification": single["classification"],
  47. }
  48. )