transforms.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "include/paddlex/transforms.h"
  15. #include <math.h>
  16. #include <iostream>
  17. #include <string>
  18. #include <vector>
  19. namespace PaddleX {
  20. std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
  21. {"NEAREST", cv::INTER_NEAREST},
  22. {"AREA", cv::INTER_AREA},
  23. {"CUBIC", cv::INTER_CUBIC},
  24. {"LANCZOS4", cv::INTER_LANCZOS4}};
  25. bool Normalize::Run(cv::Mat* im, ImageBlob* data) {
  26. std::vector<float> range_val;
  27. for (int c = 0; c < im->channels(); c++) {
  28. range_val.push_back(max_val_[c] - min_val_[c]);
  29. }
  30. std::vector<cv::Mat> split_im;
  31. cv::split(*im, split_im);
  32. #pragma omp parallel for num_threads(im->channels())
  33. for (int c = 0; c < im->channels(); c++) {
  34. float range_val = max_val_[c] - min_val_[c];
  35. cv::subtract(split_im[c], cv::Scalar(min_val_[c]), split_im[c]);
  36. cv::divide(split_im[c], cv::Scalar(range_val), split_im[c]);
  37. cv::subtract(split_im[c], cv::Scalar(mean_[c]), split_im[c]);
  38. cv::divide(split_im[c], cv::Scalar(std_[c]), split_im[c]);
  39. }
  40. cv::merge(split_im, *im);
  41. return true;
  42. }
  43. float ResizeByShort::GenerateScale(const cv::Mat& im) {
  44. int origin_w = im.cols;
  45. int origin_h = im.rows;
  46. int im_size_max = std::max(origin_w, origin_h);
  47. int im_size_min = std::min(origin_w, origin_h);
  48. float scale =
  49. static_cast<float>(short_size_) / static_cast<float>(im_size_min);
  50. if (max_size_ > 0) {
  51. if (round(scale * im_size_max) > max_size_) {
  52. scale = static_cast<float>(max_size_) / static_cast<float>(im_size_max);
  53. }
  54. }
  55. return scale;
  56. }
  57. bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) {
  58. data->im_size_before_resize_.push_back({im->rows, im->cols});
  59. data->reshape_order_.push_back("resize");
  60. float scale = GenerateScale(*im);
  61. int width = static_cast<int>(round(scale * im->cols));
  62. int height = static_cast<int>(round(scale * im->rows));
  63. cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);
  64. data->new_im_size_[0] = im->rows;
  65. data->new_im_size_[1] = im->cols;
  66. data->scale = scale;
  67. return true;
  68. }
  69. bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
  70. int height = static_cast<int>(im->rows);
  71. int width = static_cast<int>(im->cols);
  72. if (height < height_ || width < width_) {
  73. std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
  74. return false;
  75. }
  76. int offset_x = static_cast<int>((width - width_) / 2);
  77. int offset_y = static_cast<int>((height - height_) / 2);
  78. cv::Rect crop_roi(offset_x, offset_y, width_, height_);
  79. *im = (*im)(crop_roi);
  80. data->new_im_size_[0] = im->rows;
  81. data->new_im_size_[1] = im->cols;
  82. return true;
  83. }
  84. void Padding::GeneralPadding(cv::Mat* im,
  85. const std::vector<float> &padding_val,
  86. int padding_w, int padding_h) {
  87. cv::Scalar value;
  88. if (im->channels() == 1) {
  89. value = cv::Scalar(padding_val[0]);
  90. } else if (im->channels() == 2) {
  91. value = cv::Scalar(padding_val[0], padding_val[1]);
  92. } else if (im->channels() == 3) {
  93. value = cv::Scalar(padding_val[0], padding_val[1], padding_val[2]);
  94. } else if (im->channels() == 4) {
  95. value = cv::Scalar(padding_val[0], padding_val[1], padding_val[2],
  96. padding_val[3]);
  97. }
  98. cv::copyMakeBorder(
  99. *im,
  100. *im,
  101. 0,
  102. padding_h,
  103. 0,
  104. padding_w,
  105. cv::BORDER_CONSTANT,
  106. value);
  107. }
  108. void Padding::MultichannelPadding(cv::Mat* im,
  109. const std::vector<float> &padding_val,
  110. int padding_w, int padding_h) {
  111. std::vector<cv::Mat> padded_im_per_channel(im->channels());
  112. #pragma omp parallel for num_threads(im->channels())
  113. for (size_t i = 0; i < im->channels(); i++) {
  114. const cv::Mat per_channel = cv::Mat(im->rows + padding_h,
  115. im->cols + padding_w,
  116. CV_32FC1,
  117. cv::Scalar(padding_val[i]));
  118. padded_im_per_channel[i] = per_channel;
  119. }
  120. cv::Mat padded_im;
  121. cv::merge(padded_im_per_channel, padded_im);
  122. cv::Rect im_roi = cv::Rect(0, 0, im->cols, im->rows);
  123. im->copyTo(padded_im(im_roi));
  124. *im = padded_im;
  125. }
  126. bool Padding::Run(cv::Mat* im, ImageBlob* data) {
  127. data->im_size_before_resize_.push_back({im->rows, im->cols});
  128. data->reshape_order_.push_back("padding");
  129. int padding_w = 0;
  130. int padding_h = 0;
  131. if (width_ > 1 & height_ > 1) {
  132. padding_w = width_ - im->cols;
  133. padding_h = height_ - im->rows;
  134. } else if (coarsest_stride_ >= 1) {
  135. int h = im->rows;
  136. int w = im->cols;
  137. padding_h =
  138. ceil(h * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows;
  139. padding_w =
  140. ceil(w * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols;
  141. }
  142. if (padding_h < 0 || padding_w < 0) {
  143. std::cerr << "[Padding] Computed padding_h=" << padding_h
  144. << ", padding_w=" << padding_w
  145. << ", but they should be greater than 0." << std::endl;
  146. return false;
  147. }
  148. if (im->channels() < 5) {
  149. Padding::GeneralPadding(im, im_value_, padding_w, padding_h);
  150. } else {
  151. Padding::MultichannelPadding(im, im_value_, padding_w, padding_h);
  152. }
  153. data->new_im_size_[0] = im->rows;
  154. data->new_im_size_[1] = im->cols;
  155. return true;
  156. }
  157. bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
  158. if (long_size_ <= 0) {
  159. std::cerr << "[ResizeByLong] long_size should be greater than 0"
  160. << std::endl;
  161. return false;
  162. }
  163. data->im_size_before_resize_.push_back({im->rows, im->cols});
  164. data->reshape_order_.push_back("resize");
  165. int origin_w = im->cols;
  166. int origin_h = im->rows;
  167. int im_size_max = std::max(origin_w, origin_h);
  168. float scale =
  169. static_cast<float>(long_size_) / static_cast<float>(im_size_max);
  170. cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST);
  171. data->new_im_size_[0] = im->rows;
  172. data->new_im_size_[1] = im->cols;
  173. data->scale = scale;
  174. return true;
  175. }
  176. bool Resize::Run(cv::Mat* im, ImageBlob* data) {
  177. if (width_ <= 0 || height_ <= 0) {
  178. std::cerr << "[Resize] width and height should be greater than 0"
  179. << std::endl;
  180. return false;
  181. }
  182. if (interpolations.count(interp_) <= 0) {
  183. std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'"
  184. << std::endl;
  185. return false;
  186. }
  187. data->im_size_before_resize_.push_back({im->rows, im->cols});
  188. data->reshape_order_.push_back("resize");
  189. cv::resize(
  190. *im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]);
  191. data->new_im_size_[0] = im->rows;
  192. data->new_im_size_[1] = im->cols;
  193. return true;
  194. }
  195. bool Clip::Run(cv::Mat* im, ImageBlob* data) {
  196. std::vector<cv::Mat> split_im;
  197. cv::split(*im, split_im);
  198. for (int c = 0; c < im->channels(); c++) {
  199. cv::threshold(split_im[c], split_im[c], max_val_[c], max_val_[c],
  200. cv::THRESH_TRUNC);
  201. cv::subtract(cv::Scalar(0), split_im[c], split_im[c]);
  202. cv::threshold(split_im[c], split_im[c], min_val_[c], min_val_[c],
  203. cv::THRESH_TRUNC);
  204. cv::divide(split_im[c], cv::Scalar(-1), split_im[c]);
  205. }
  206. cv::merge(split_im, *im);
  207. return true;
  208. }
  209. void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
  210. transforms_.clear();
  211. to_rgb_ = to_rgb;
  212. for (const auto& item : transforms_node) {
  213. std::string name = item.begin()->first.as<std::string>();
  214. if (name == "ArrangeClassifier") {
  215. continue;
  216. }
  217. if (name == "ArrangeSegmenter") {
  218. continue;
  219. }
  220. if (name == "ArrangeFasterRCNN") {
  221. continue;
  222. }
  223. if (name == "ArrangeMaskRCNN") {
  224. continue;
  225. }
  226. if (name == "ArrangeYOLOv3") {
  227. continue;
  228. }
  229. std::shared_ptr<Transform> transform = CreateTransform(name);
  230. transform->Init(item.begin()->second);
  231. transforms_.push_back(transform);
  232. }
  233. }
  234. std::shared_ptr<Transform> Transforms::CreateTransform(
  235. const std::string& transform_name) {
  236. if (transform_name == "Normalize") {
  237. return std::make_shared<Normalize>();
  238. } else if (transform_name == "ResizeByShort") {
  239. return std::make_shared<ResizeByShort>();
  240. } else if (transform_name == "CenterCrop") {
  241. return std::make_shared<CenterCrop>();
  242. } else if (transform_name == "Resize") {
  243. return std::make_shared<Resize>();
  244. } else if (transform_name == "Padding") {
  245. return std::make_shared<Padding>();
  246. } else if (transform_name == "ResizeByLong") {
  247. return std::make_shared<ResizeByLong>();
  248. } else if (transform_name == "Clip") {
  249. return std::make_shared<Clip>();
  250. } else {
  251. std::cerr << "There's unexpected transform(name='" << transform_name
  252. << "')." << std::endl;
  253. exit(-1);
  254. }
  255. }
  256. bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
  257. // do all preprocess ops by order
  258. if (to_rgb_) {
  259. cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
  260. }
  261. (*im).convertTo(*im, CV_32FC(im->channels()));
  262. data->ori_im_size_[0] = im->rows;
  263. data->ori_im_size_[1] = im->cols;
  264. data->new_im_size_[0] = im->rows;
  265. data->new_im_size_[1] = im->cols;
  266. for (int i = 0; i < transforms_.size(); ++i) {
  267. if (!transforms_[i]->Run(im, data)) {
  268. std::cerr << "Apply transforms to image failed!" << std::endl;
  269. return false;
  270. }
  271. }
  272. // data format NHWC to NCHW
  273. // img data save to ImageBlob
  274. int h = im->rows;
  275. int w = im->cols;
  276. int c = im->channels();
  277. (data->im_data_).resize(c * h * w);
  278. float* ptr = (data->im_data_).data();
  279. for (int i = 0; i < c; ++i) {
  280. cv::extractChannel(*im, cv::Mat(h, w, CV_32FC1, ptr + i * h * w), i);
  281. }
  282. return true;
  283. }
  284. } // namespace PaddleX