| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- import paddlex as pdx
- from paddlex import transforms as T
- # 下载和解压昆虫检测数据集
- dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
- pdx.utils.download_and_decompress(dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
- train_transforms = T.Compose([
- T.MixupImage(mixup_epoch=-1), T.RandomDistort(),
- T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
- T.RandomHorizontalFlip(), T.BatchRandomResize(
- target_sizes=[
- 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704,
- 736, 768
- ],
- interp='RANDOM'), T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- eval_transforms = T.Compose([
- T.Resize(
- target_size=640, interp='CUBIC'), T.Normalize(
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
- train_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/train_list.txt',
- label_list='insect_det/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.VOCDetection(
- data_dir='insect_det',
- file_list='insect_det/val_list.txt',
- label_list='insect_det/labels.txt',
- transforms=eval_transforms,
- shuffle=False)
- # 初始化模型,并进行训练
- # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/train/visualdl.md
- num_classes = len(train_dataset.labels)
- model = pdx.det.PPYOLOv2(num_classes=num_classes, backbone='ResNet50_vd_dcn')
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/detection.md
- # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md
- model.train(
- num_epochs=170,
- train_dataset=train_dataset,
- train_batch_size=8,
- eval_dataset=eval_dataset,
- pretrain_weights='COCO',
- learning_rate=0.005 / 12,
- warmup_steps=1000,
- warmup_start_lr=0.0,
- lr_decay_epochs=[105, 135, 150],
- save_interval_epochs=5,
- save_dir='output/ppyolov2_r50vd_dcn')
|