ppyolov2.py 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压昆虫检测数据集
  4. dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
  5. pdx.utils.download_and_decompress(dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
  8. train_transforms = T.Compose([
  9. T.MixupImage(mixup_epoch=-1), T.RandomDistort(),
  10. T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
  11. T.RandomHorizontalFlip(), T.BatchRandomResize(
  12. target_sizes=[
  13. 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704,
  14. 736, 768
  15. ],
  16. interp='RANDOM'), T.Normalize(
  17. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  18. ])
  19. eval_transforms = T.Compose([
  20. T.Resize(
  21. target_size=640, interp='CUBIC'), T.Normalize(
  22. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  23. ])
  24. # 定义训练和验证所用的数据集
  25. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
  26. train_dataset = pdx.datasets.VOCDetection(
  27. data_dir='insect_det',
  28. file_list='insect_det/train_list.txt',
  29. label_list='insect_det/labels.txt',
  30. transforms=train_transforms,
  31. shuffle=True)
  32. eval_dataset = pdx.datasets.VOCDetection(
  33. data_dir='insect_det',
  34. file_list='insect_det/val_list.txt',
  35. label_list='insect_det/labels.txt',
  36. transforms=eval_transforms,
  37. shuffle=False)
  38. # 初始化模型,并进行训练
  39. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/train/visualdl.md
  40. num_classes = len(train_dataset.labels)
  41. model = pdx.det.PPYOLOv2(num_classes=num_classes, backbone='ResNet50_vd_dcn')
  42. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/detection.md
  43. # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md
  44. model.train(
  45. num_epochs=170,
  46. train_dataset=train_dataset,
  47. train_batch_size=8,
  48. eval_dataset=eval_dataset,
  49. pretrain_weights='COCO',
  50. learning_rate=0.005 / 12,
  51. warmup_steps=1000,
  52. warmup_start_lr=0.0,
  53. lr_decay_epochs=[105, 135, 150],
  54. save_interval_epochs=5,
  55. save_dir='output/ppyolov2_r50vd_dcn')