pipeline.py 2.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. # copyright (c) 2025 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. from ...models_new.multilingual_speech_recognition.result import WhisperResult
  19. class MultilingualSpeechRecognitionPipeline(BasePipeline):
  20. """Multilingual Speech Recognition Pipeline"""
  21. entities = "multilingual_speech_recognition"
  22. def __init__(
  23. self,
  24. config: Dict,
  25. device: str = None,
  26. pp_option: PaddlePredictorOption = None,
  27. use_hpip: bool = False,
  28. hpi_params: Optional[Dict[str, Any]] = None,
  29. ) -> None:
  30. """
  31. Initializes the class with given configurations and options.
  32. Args:
  33. config (Dict): Configuration dictionary containing model and other parameters.
  34. device (str): The device to run the prediction on. Default is None.
  35. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  36. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  37. hpi_params (Optional[Dict[str, Any]]): HPIP specific parameters. Default is None.
  38. """
  39. super().__init__(
  40. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params
  41. )
  42. multilingual_speech_recognition_model_config = config["SubModules"][
  43. "MultilingualSpeechRecognition"
  44. ]
  45. self.multilingual_speech_recognition_model = self.create_model(
  46. multilingual_speech_recognition_model_config
  47. )
  48. # only support batch size 1
  49. batch_size = multilingual_speech_recognition_model_config["batch_size"]
  50. def predict(
  51. self, input: str | list[str] | np.ndarray | list[np.ndarray], **kwargs
  52. ) -> WhisperResult:
  53. """Predicts speech recognition results for the given input.
  54. Args:
  55. input (str | list[str] | np.ndarray | list[np.ndarray]): The input audio or path.
  56. **kwargs: Additional keyword arguments that can be passed to the function.
  57. Returns:
  58. WhisperResult: The predicted whisper results, support str and json output.
  59. """
  60. yield from self.multilingual_speech_recognition_model(input)