python.md 1.7 KB

Python部署

PaddleX已经集成了基于Python的高性能预测接口,在安装PaddleX后,可参照如下代码示例,进行预测。相关的接口文档可参考paddlex.deploy

导出预测模型

可参考模型导出将模型导出为inference格式的模型。

预测部署

注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考模型版本升级对模型版本进行升级。

点击下载测试图片 xiaoduxiong_test_image.tar.gz

import paddlex as pdx
predictor = pdx.deploy.Predictor('./inference_model')
result = predictor.predict(image='xiaoduxiong_test_image/JPEGImages/WeChatIMG110.jpeg')

预测性能对比

测试环境

  • CUDA 9.0
  • CUDNN 7.5
  • PaddlePaddle 1.71
  • GPU: Tesla P40
  • AnalysisPredictor 指采用Python的高性能预测方式
  • Executor 指采用paddlepaddle普通的python预测方式
  • Batch Size均为1,耗时单位为ms/image,只计算模型运行时间,不包括数据的预处理和后处理

性能对比

模型 AnalysisPredictor耗时 Executor耗时 输入图像大小
resnet50 4.84 7.57 224*224
mobilenet_v2 3.27 5.76 224*224
unet 22.51 34.60 513*513
deeplab_mobile 63.44 358.31 1025*2049
yolo_mobilenetv2 15.20 19.54 608*608
faster_rcnn_r50_fpn_1x 50.05 69.58 800*1088
faster_rcnn_r50_1x 326.11 347.22 800*1067
mask_rcnn_r50_fpn_1x 67.49 91.02 800*1088
mask_rcnn_r50_1x 326.11 350.94 800*1067