| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # !/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- ################################################################################
- #
- # Copyright (c) 2024 Baidu.com, Inc. All Rights Reserved
- #
- ################################################################################
- """
- Author: PaddlePaddle Authors
- """
- import os
- import sys
- import argparse
- import numpy as np
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- def parse_args():
- """ Parse input arguments """
- parser = argparse.ArgumentParser()
- parser.add_argument(
- '--prediction_json_path', type=str, default='./bbox.json')
- parser.add_argument(
- '--gt_json_path', type=str, default='./instance_val.json')
- args = parser.parse_args()
- return args
- def json_eval_results(args):
- """
- cocoapi eval with already exists bbox.json
- """
- prediction_json_path = args.prediction_json_path
- gt_json_path = args.gt_json_path
- assert os.path.exists(
- prediction_json_path), "The json directory:{} does not exist".format(
- prediction_json_path)
- cocoapi_eval(prediction_json_path, "bbox", anno_file=gt_json_path)
- def cocoapi_eval(jsonfile,
- style,
- coco_gt=None,
- anno_file=None,
- max_dets=(100, 300, 1000),
- sigmas=None,
- use_area=True):
- """
- Args:
- jsonfile (str): Evaluation json file, eg: bbox.json
- style (str): COCOeval style, can be `bbox`
- coco_gt (str): Whether to load COCOAPI through anno_file,
- eg: coco_gt = COCO(anno_file)
- anno_file (str): COCO annotations file.
- max_dets (tuple): COCO evaluation maxDets.
- sigmas (nparray): keypoint labelling sigmas.
- use_area (bool): If gt annotations (eg. CrowdPose, AIC)
- do not have 'area', please set use_area=False.
- """
- assert coco_gt is not None or anno_file is not None
- if coco_gt is None:
- coco_gt = COCO(anno_file)
- coco_dt = coco_gt.loadRes(jsonfile)
- if style == 'proposal':
- coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
- coco_eval.params.useCats = 0
- coco_eval.params.maxDets = list(max_dets)
- elif style == 'keypoints_crowd':
- coco_eval = COCOeval(coco_gt, coco_dt, style, sigmas, use_area)
- else:
- coco_eval = COCOeval(coco_gt, coco_dt, style)
- coco_eval.evaluate()
- coco_eval.accumulate()
- coco_eval.summarize()
- # flush coco evaluation result
- sys.stdout.flush()
- return coco_eval.stats
- if __name__ == "__main__":
- args = parse_args()
- json_eval_results(args)
|