| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from .model import _ModelBasedConfig
- from .utils.config import get_config, parse_args
- from .utils.errors import raise_unsupported_api_error
- from .utils.flags import INFER_BENCHMARK
- from .utils.lazy_loader import disable_pir_bydefault
- from .utils.result_saver import try_except_decorator
- class Engine(object):
- """Engine"""
- def __init__(self):
- args = parse_args()
- config = get_config(args.config, overrides=args.override, show=False)
- self._mode = config.Global.mode
- self._output = config.Global.output
- self._model = _ModelBasedConfig(config)
- @try_except_decorator
- def run(self):
- """the main function"""
- if self._mode == "check_dataset":
- return self._model.check_dataset()
- elif self._mode == "train":
- disable_pir_bydefault()
- self._model.train()
- elif self._mode == "evaluate":
- disable_pir_bydefault()
- return self._model.evaluate()
- elif self._mode == "export":
- disable_pir_bydefault()
- return self._model.export()
- elif self._mode == "predict":
- for res in self._model.predict():
- if INFER_BENCHMARK:
- continue
- res.print()
- if self._output:
- res.save_all(save_path=self._output)
- else:
- raise_unsupported_api_error(f"{self._mode}", self.__class__)
|